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ABSTRACT 

Teschovirus A (previously Porcine teschovirus; PTV) is the etiologic agent of 

Teschovirus encephalomyelitis (TE). Historically, PTV-1 has been recognized as one of the 

most pathogenic serotypes, although other serotypes have been described to cause TE. 

Hence, most information about the pathogenicity, epidemiology and control of disease relies 

on data from studies involving PTV-1. 

In recent years, two cases submitted to the Iowa State University Veterinary 

Diagnostic Laboratory with a history of polioencephalitis and/or myelitis were identified and 

genomic sequencing characterized these isolates as (sero)types PTV-2 and PTV-11. 

Although multiple serotypes have been identified and genetically characterized, the 

neuropathogenicity of some of these serotypes has not been fully elucidated. 

To assess these isolates, we developed an experimental model to determine the 

neuropathogenicity of the PTV-2 and PTV-11 isolates and observed that both isolates caused 

histological lesions and clinical disease consistent with TE in cesarean-derived colostrum- 

deprived pigs. Furthermore, PTV RNA was detected in different tissues, serum and feces in 

all inoculated animals by RT-qPCR. 

The experimental approach used in this research permitted to develop a successful 

platform to induce clinical disease. This is the first description of a neuropathogenic PTV-11 

strain in the U.S. and the first experimental inoculation using a PTV-2 autochthonous U.S. 

strain after the initial description of PTV-2 strain O3b made by Long at al. in 1966. This is 

also the first assessment of the viral shedding, viremia and distribution by real time RT- 
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qPCR of nucleic acids of PTV-2 and PTV-11 in experimentally infected pigs with 

Teschovirus encephalomyelitis. 
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CHAPTER 1. INTRODUCTION. 

Objective 

Teschovirus A (previously Porcine teschovirus; PTV) is the etiologic agent of 

Teschovirus encephalomyelitis (TE). The species Teschovirus A includes thirteen different 

known serotypes and is the sole member of the genus Teschovirus, family Picornaviridae[1]. 

Teschovirus A is a single-stranded, linear, non-segmented positive sense RNA virus. The virus 

possesses a 28-30 nm icosahedral cáspside enclosing its genome. The genome is approximately 

7.8 kb and encodes a single mRNA transcript. Only one open reading frame is described, 

encoding a polypeptide that is cleaved post-translationally in the different structural and non- 

structural proteins. 

The most severe forms of Teschovirus encephalomyelitis is associated with Teschovirus 

A serotype 1 (PTV-1). The virus is ubiquitous and has a worldwide distribution affecting 

commercial and feral swine populations.  In the U.S., the presence of PTV-1 strains have been 

documented in Minnesota; however, outbreaks of clinical disease are only sporadically reported. 

Outbreaks of neurological disease associated with neuropathogenic strains of the virus other than 

PTV-1 have been more widely and frequently reported. 

To further advance our understanding of TE; the Iowa State University Veterinary 

Diagnostic Laboratory (ISU-VDL) has pursued the isolation of Teschovirus A associated with 

clinical cases. Two isolates were identified as Teschovirus A serotype 2 (PTV-2) and Teschovirus 

A serotype 11 (PTV-11). 
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The main objectives of this thesis were two-fold 1) develop an experimental model for 

Teschovirus A and 2) investigate the neuropathogenicity of Teschovirus A serotypes 2 and 11 

through the reproduction of clinical signs, evaluation of the presence, severity and distribution of 

histopathologic lesions in central nervous system (CNS) tissue and detection of Teschovirus A 

RNA in multiple samples types from colostrum-deprived cesarean-derived pigs with TE. 

 

 

Thesis Organization 

 

This thesis consists of six different chapters organized as: general introduction, literature 

review, epidemiological background information from ISU-VDL, research submitted for 

publication in a peer reviewed journal (Viruses); preliminary results from an experiment 

involving the detection PTV nucleic acids and a final general summary. 

 

 

Statement of the Problem 

 

Recently outbreaks of neurologic disease are being observed more frequently in 

association with the detection of Teschovirus A by polymerase chain reaction (PCR) assays at the 

ISU-VDL. Affected animals submitted from different swine systems and epidemiological 

information provided by submitting veterinarians indicates that outbreaks are affecting more 

animals, from different age ranges and lasting longer in affected herds than observed previously. 

Economic losses in affected herds can be significant and currently there are no efficient methods 

to prevent or treat the disease. PTV strains not previously described appear to be emerging in 

addition to strains that have traditionally predominated. 
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Strains of PTV are endemically distributed within commercial swine operations and 

majority of growing and adult pigs have detectable levels of Teschovirus A antibodies; although, 

the association of serological results with the prevalence and severity of clinical disease caused 

by Teschovirus A infection is poorly understood. Hence, from a swine medicine standpoint, it is 

essential to determine whether the isolates PTV 2 and PTV 11 are neuropathogenic and capable 

of inducing clinical disease. 
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CHAPTER 2. LITERATURE REVIEW. 

 

 

 

Introduction 

 

Teschovirus A (PTV) has been isolated throughout the world, and swine are the only 

natural known host for the virus [2]. Teschovirus A is the causative agent of TE and may 

contribute to reproductive, respiratory, enteric, and dermatological clinical conditions [3]. A 

majority of infections are asymptomatically; and symptomatic presentations are thought to occur 

sporadically[2,4].  The virus is consistently found in feces from all age categories [5]. 

Teschovirus A consists of thirteen different serotypes [6]. The pathogenicity of all these 

serotypes have not been fully assessed, serotypes can be further divided in different biotypes that 

can be either pathogenic or non-pathogenic. 

 

 

Taxonomy and Classification 

 

Teschen disease was originally reported in 1929 by MVDr. Leopold Trefny in the district 

of Teschen, Czechoslovakia, as a highly virulent fatal disease of swine [7]. Shortly thereafter the 

disease was called “encephalomyelitis enzootica suum non purulenta,” and the etiologic agents 

was identified as “Teschen virus” [8,9]. The disease has also been known as “Koblouck’s 

disease” and “Teschen disease”. Similar clinical signs were noted in the United Kingdom (1957) 

and Denmark (1959) where the disease was identified as “Talfan disease” and “benign enzootic 

paresis”, respectively[10,11]. Also during 1959, the virus was identified to belong to the 

“enterovirus group of swine [sic]” [12] and the FAO/WHO/OIE Animal Health Yearbook 

introduced the eponym “Teschen disease” and made the disease internationally notifiable [13]. 
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Eight distinctive serotypes were identified by different authors by serum neutralization tests [14- 

21] and three distinctive cytopathic effects (CPE) were consistently noted in tissue culture[22] . 

Hence, a new classification for porcine enteroviruses was proposed and strains were 

divided depending upon the cytopathic effect exhibited in group CPE I, group CPE II and group 

CPE III. This allowed differentiation of strains into separate groups and permitted a more 

stringent classification. 

In the year 1971 the International Committee on Taxonomy of Viruses (ICTV) (formerly 

known as the International Committee on the Nomenclature of Viruses) introduced the genus 

Enterovirus and a scientific criterion was established for the introduction of new viruses to this 

genus [23]. In 1974, the ICTV introduced the term “porcine enteroviruses” as a new member of 

the genus Enterovirus [24], and isolates such as Talfan and Teschen and other strains of the virus 

were included in this genus. In 1979, three new serotypes were identified, thus the number of 

prototype strains increased to eleven [25]. In 1994, two new prototype strains were identified 

increasing again the number of prototype strains (serotypes) from eleven to thirteen [26]. 

In summary, the Porcine enteroviruses (PEVs) were classified into 13 distinct serotypes 

(PEV 1–13) that included antigenically related strains of the virus with presumably different 

levels of virulence. Due to their distinct characteristics, they were classified as group I (PEV 

serotypes 1–7 and 11–13), group II (PEV-8), and group III (PEVs 9 and 10). The classification 

into distinctive serotypes is based on the criteria established by Dunne et al. where the cross- 

neutralization reactivity of a serum should have a minimum reaction of 5% of the homologous 

serum titre to be defined a standalone serotype. The literature describes minimal cross protection 

across serotypes in vitro (i.e. No cross-reaction above 5% of homologous titre); although, there is 
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evidence of reciprocal cross neutralization between different strains of the same serotype (i.e. 

cross-reaction above 5% of homologous titre) [27,28]. 

In 1999, the genetic cluster composed by the Porcine enterovirus 1 strains was renamed 

as Porcine teschovirus and the genus Teschovirus was created. This change in nomenclature 

occurred during the XIth International Congress of Virology held in Sydney, Australia. The 

genus name was derived from the disease name (Teschen disease) and included all strains of 

porcine enterovirus 1 known to that date [29]. In the 7th ICTV report, the remaining serotypes 

(i.e. PEVs 2-7 and 11-13) were abolished and porcine enterovirus 8 was reclassified as porcine 

enterovirus A. Additionally, both porcine enterovirus 9 and porcine enterovirus 10 were 

renamed as porcine enterovirus B; however, enterovirus A and B remained under the Enterovirus 

genus [30,31]. 

In 2001, with the advent of more advanced techniques such as nucleotide sequencing and 

phylogenetic analysis a new classification of the members of the genus Teschovirus was 

proposed. In addition to Porcine teschovirus 1, PEVs in the CPE group 1 (i.e. serotypes 2–7 and 

11–13) were renamed as Porcine teschovirus 1-11. 

In 2011 and 2012, two new serotypes were identified in Spain and Hungary, increasing 

the number of serotypes to a total of thirteen (i.e. Porcine teschovirus A 1-13). 

In 2014, the species Porcine teschovirus was renamed as Teschovirus A; although, the 

common name remained Porcine teschovirus, thus helping to differentiate it from the species 

name (i.e. Porcine teschovirus 1-13). 
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Virology 

 

 

 

Teschovirus A is a linear, monopartite, single stranded ribonucleic acid (RNA) virus. The 

virus is non-enveloped with a spherical morphology of icosahedral symmetry and a diameter of 

25-30 nm. The capsid shows a T=pseudo3 icosahedral structure composed of 60 protomers 

constituted by three surface polypeptides (i.e. VP1, VP2, VP3) and an internal polypeptidic 

component (i.e. VP4). Teschovirus A contains a genome of approximately of 7.0-7-2 kb which 

encodes a polyprotein flanked by a 5’- and a 3’- untranslated region (UTR). The single stranded 

RNA is enclosed in the capsid. The 5’UTR is preceded by a viral protein (VPg) and the 3’ UTR 

is polyadenylated.  The genome organization can be expressed as: 

 

 

VPg+5'UTRIRES-IV[L/1A-1B-1C-1D-2Anpgp/2B-2C/3A-3BVPg-3Cpro-3Dpol]3'UTR-poly(A) 

 

[32] 
 

 

 

Where the protein VPg acts as a primer after being uridylated (VPg-pUpU) for the RNA- 

dependent RNA polymerase (3Dpol) to initiate RNA synthesis[33]. 

Located in the 5’ UTR, there is a distinctive region of RNA necessary for the recruitment 

of the 40s-ribosome subunit, the internal ribosome entry site (IRES). 

Teschovirus A possess an IRES type IV which uses most canonical translation initiation 

factors, less eIF4E which is cleaved by the 2A protease, and requires additional factors for 

efficient translation (ITAFs- IRES trans-acting factors)[34] to translate a single open reading 

frame (ORF). 
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Downstream the genome is encoded by a leader protein (L), which the function is 

unclear, and by the P1 conserved structural domain encoding the cáspside proteins 1A-1B-1C- 

1D (i.e. VP4, VP2, VP3, VP1). 

The genome is followed by the P2 nonstructural domain encoding 2A, 2B and 2C. The 

2A section of the genome translates a self-cleaving peptide which induces “ribosomal skipping” 

of the sequence resulting in the co-translational cleavage of the polyprotein. This cleavage is 

indicated to occur at the consensus sequence NPG↓P[35,36]. The function of the 2B non- 

conserved protein is unknown but analog poliovirus 2B protein is known to alter membrane 

permeability by the formation of pores.[37] The 2C section encodes an ATPase. 

The P3 nonstructural domain encodes 3A, 3B, 3C and 3D. The function of 3A is 

unknown and 3B encodes a VPg that is linked to the 5’UTR. The 3C section encodes a protease 

(chymotrypsin-like proteinase) and the 3D section encodes the RNA-dependent RNA 

polymerase (RdRp). 

The reference prototype strains recognized by the ICTV Picornaviridae Study Group and 

OIE are the following: PTV-1: Zabreh (Teschen) and Talfan strains, PTV-2: T80 strain, PTV-3: 

O2b strain, PTV-4: PS36 strain, PTV-5: F26 strain, PTV- 6: PS37 strain, PTV-7: F43 strain, 

PTV- 8: UKG/173/74 strain, PTV- 9: Ger-2899/84 strain, PTV-10: Ger-460/88 strain and PTV- 

11: Dresden strain. The last serotypes identified include PTV 12: CC25/SPA/2006 and PTV-13: 

wild boar/WB2C-TV/2011/HUN [3]. 

The different serotypes of Teschovirus A conceptually exist in nature as quasispecies. 

 

Vignuzzi et al. stated that “Quasispecies arise from rapid genomic evolution powered by the high 

mutation rate of RNA viral replication. Although a high mutation rate is dangerous for a virus 

because it results in nonviable individuals, it has been hypothesized that high mutation rates 
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create a 'cloud' of potentially beneficial mutations at the population level, which afford the 

 

viral quasispecies a greater probability to evolve and adapt to new environments and challenges 

during infection”[38]. Wang et al. indicated that a PTV-2 strain found in China emerged from 

the genetic recombination of a diverse parental antecessor sharing a high similarity with 

serotypes 2 and 5; and evolution of PTVs, as shown in other genera of picornaviruses, could be 

due to homologous recombination [39]. 

 

 

Immunity 

 
 

 

Generally, infections caused by PTV are asymptomatic; although, seroconversion has 

been documented [15,40-42]. A weak and localized in vitro cellular mediated response against 

this pathogen was demonstrated in an experimental study; however, it appeared that the antiviral 

activity by cellular components do not play a major role in natural infections[43]. 

Animal age appeared to be an important risk factor when considering the likelihood of 

development of clinical disease; mature animals seemed to be less susceptible than younger 

animals [44]. Additionally, the quality and/or amount of colostrum intake has been associated 

with the development of clinical disease [44-47]. Piglets may absorb specific IgG and IgA 

against PTV if the mother had been previously exposed to the agent [48,49]. 

The secretion of specific IgA antibodies into the intestinal lumen is an important element 

of mucosal immunity; although, a defective response can occur if the number of viral particles 

exceeds the neutralizing capacity of the IgA present at the lumen of the intestine [50]. 

Experimental oral inoculation with strain T80 of PTV-2 demonstrated that IgA is the 

predominant antibody secreted into the intestinal lumen although newborn piglets rely on IgA 
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from milk until approximately 3 weeks of life, given that adequate intestinal production of 

secretory IgA does not occur until that time[51]. 

Pogranichniy et al. demonstrated through a prospective longitudinal serological 

investigation that colostrum neutralizing antibodies declined rapidly in a herd endemically 

infected by PTV, and by the 3rd week of age, piglets had minimal or no neutralizing antibodies in 

serum. [52]. 

Derbyshire et al. demonstrated the protective effect of maternal antibodies against PTV 

trough the experimental inoculation of PTV to a small herd. Piglets born from exposed or 

antibody-positive sows, that were subsequently challenged with PTV, excreted the virus in feces 

only after weaning when maternal lactogenic immunity is no longer available or colostral IgG in 

the blood has declined. In addition, piglets developed an antibody response during the post- 

weaning period when they were no longer protected by maternally derived immunity [40]. These 

findings suggest mucosal IgA may play a preponderant role against Teschovirus A infections, 

protecting weaning piglets through the intake of maternal antibodies or at post-weaning, after a 

primary immune response has been induced in the digestive tract [53,54]. 

Another study demonstrated that neonatal colostrum deprived germ-free piglets 

inoculated with a live avirulent strain of Teschovirus A will mount an immunological response 

approximately 5 days post-inoculation and this response progressively increased until the end of 

the experiment (15 days post-inoculation) [41]. 

A study investigating the antiviral activity of interferon alpha (IFN-α) and interferon beta 

(IFN-β) against PTV-2 infection demonstrated that IFN-α was more efficient than IFN-β when 

combating infection in vitro, indicating that innate immunological responses could play a 

significant role in preventing natural infections [55]. 
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Experiments involving immunosuppressed animals have shown increased susceptibility 

to disease manifested by the exacerbation of clinical signs when compared to immunocompetent 

animals. In one experiment, pigs infected with PTV and treated with immunosuppressive doses 

of dexamethasone showed earlier and more severe clinical signs in addition to more severe 

histopathologic lesions when compared to non-dexamethasone treated pigs. There was also a 

positive correlation between the presence of severe lesions and dexamethasone-treatment when 

compared with the non-treated animals[56]. 

In a similar study, pigs infected with the T80 strain of PTV-2 and later treated with 

immunosuppressive doses of cyclophosphamide showed clinical signs compatible with TE. No 

clinical disease in uninfected and untreated control animals was observed. The authors indicated 

that infected cyclophosphamide-treated animals failed to develop a specific immune response in 

comparison with control animal [57]. 

Various authors have identified co-infections of Teschovirus A with other viruses. 

 

Authors have described clinical disease caused by PTV in association with Porcine Circovirus 2 

(PCV2), a virus known to induce immunosuppression in affected animals [58-61]; however it is 

known that PCV2 is endemic within most commercial herds and potential synergism between 

these two pathogens should be investigated further. Porcine Reproductive and Respiratory 

Syndrome virus (PRRSv) has also been identified in conjunction with Teschovirus A in several 

outbreaks of disease, however the interaction between these two viruses has not been fully 

assessed [60]. Co-infections produced by Sapelovirus A, Enterovirus G, and different strains of 

PTV have been documented but not fully assessed [5,62-64]. 
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The coinfection of rotaviruses with low-pathogenic strains of PTV had been documented 

although no manifestation of clinical TE was observed [65,66]. No data is available for the joint 

effect of pathogenic strains of PTV and rotaviruses. 

 

 

Pathogenesis 

 

 

 

Entry routes 

 

The fecal-oral route is the most established route of transmission; however, aerogenous, 

venereal and iagtrogenic routes have been postulated. 

 

 

Fecal-oral route 

 

The most relevant transmission route for PTV is the fecal-oral route[4,42,67]. After 

ingestion, the virus replicates in the tonsils and in different segments of the gastrointestinal 

tract[68]. The large intestine and ileum appear to be more prone to primary replication when 

compared to other segments of the gastrointestinal tract; although, viral replication has been 

demonstrated in other sections of small intestine. Viral replication appears to be more efficient 

and consistent within the large intestine when compared to other segments of the small 

intestines; although, there might be differences across serotypes[49]. The exact cells in which the 

virus attaches and initiate replication remains unknown. It is postulated that M cells are the 

primary target in which the virus attaches and is internalized by endocytosis; however, others 

have proposed that enterocytes also play an important role in this process. 
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The replication in the tonsil, suspected to occur primordially in the tonsillar follicles, 

could be later followed by retrograde axonal transport of virions to the CNS via cranial nerves 

Trigeminus, Facial and Glossopharyngeal[69]. 

 

 

Intranasal and respiratory route 

 

Different studies have successfully induced clinical disease by intranasal inoculation 

[42,70-72]. Analogously, experiments with Poliovirus shown successful initial replication in the 

nasal cavity. The proposed entry route of viral particles is through the infection of epithelial 

cells. The initial replication of the virus in these cells could initiate a viremic phase and 

dissemination via retrograde axonal transport by Olfactory, Trigeminal and Facial cranial nerves 

has been theorized. The infection by direct deposit of viral particles in the pulmonary 

parenchyma and/or in lower sections of respiratory tract is theoretically possible; although, 

studies investigating solely this alternative are not available [73]. 

 

 

Venereal route 
 

Teschovirus A has been successfully introduced into the genital tract of sows by artificial 

insemination via contaminated semen [74]. The presence of viral particles in urine has been 

documented and it can be as high as one thousand viral copies per microliter of urine [75]. 

Shedding of the virus during ejaculation is theoretically possible; however, natural infection by 

coitus have not been demonstrated. Evidence of PTV antigen in fetal tissues has been 

documented; although, the route of transmission has not been elucidated. PTV have been 

associated with fetal losses. Oral, aerosol and/or subcutaneous inoculation of the virus in 

gestating sows 30 days prior to gestation resulted in embryonic death [59,76-78]. 
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Iagtrogenic route 

 

Transmission through the use of contaminated syringes, artificial insemination, teeth 

clipping, nasogastric feeding and other common routine practices are another potential 

alternative of virus spread. [76]. 

 

 

Intracellular primary replication site 

 

The process of which virión initiates primary replication in the host cell after endocytosis 

is not known. Authors have conjectured by analogy with other members of the family 

Picornaviridae that after the virions are engulfed by endocytosis, the acidic pH of the endosome 

induces the initial disassembly of the virión causing conformational changes in the virion capsid 

with the release of the VP4 and posterior formation of an endosomal pore. After this step, the 

viral genomic RNA appears to be injected into the cell’s cytoplasm. 

After replication in the original infected cell and posterior cellular lysis, the virus is 

thought to gain access to blood and lymphatic vessels and results in a viremia. The detection of 

viral antigens by immunohistochemistry in the myenteric nerve plexus in the small and large 

intestine indicates that this structure is a potential replication site of the virus[68].Replication in 

neurons innervating the gastrointestinal tract appear to be a strategy used by the virus to gain 

access to the CNS by retrograde axonal transport. 

 

 

Dissemination and CNS entry. 

 

Studies have documented a transient viremia after the initial replication in the 

gastrointestinal tract suggesting that infectious virions are able to cross the blood-brain barrier 
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and establish a productive infection. Other authors have postulated that the virus enters through 

affected neurons of the enteric nervous system (ENS) and peripheral nervous system (PNS) and 

by retrograde axonal transport of infectious virions the CNS is invaded. 

 

 

The Fecal-Oral Model of Pathogenesis and Virus Distribution. 

 

The fecal-oral model of pathogenesis postulated for Teschovirus A infections dictates that 

the presence of viral RNA in the gastrointestinal tract is indicative of the presence and 

contamination of PTV in swine herds. The detection of viral RNA in gastrointestinal lymph 

nodes and/or other lymphoid organs could indicate viral penetration beyond the tunica mucosa; 

and its presence in visceral organs might be indicative of viremia. The presence of viral RNA in 

CNS tissue correlates with virus penetration and invasion of the CNS. 

Studies detecting the presence of viral RNA targeting the 5’ UTR by RT-PCR have 

shown that the virus is present in varied organs. Chiu et al. informed that the presence of PTV in 

endemically infected pigs was detected in decreasing order of magnitude, from the following 

tissues: Intestine (x̄ 61%); Lymphoid organs (x̄ 59%); Visceral organs (x̄ 37%); Caudal section 

of brain and C1(x̄ 17%); Rostral and medial parts of brain (x̄ -47%). In a subsequent study 

carried out by the same author, involving the sampling of 29 animals between 4-8 weeks of age 

from farrow to finish herds the detection of PTV viral RNA yielded the following results: 

Inguinal lymph node (100%); Iliac lymph node (89–91%); Tonsil (66–68%); Ileum (59–60%); 

Spleen (38–40%); Kidney (30–31%) and Brain (22.9%). In both studies, samples were obtained 

from 4 to 8 weeks-old pigs showing poor growth performance, gastrointestinal and respiratory 

symptoms. In these studies, serotypes PTV-1, -4, -6, -7, and -11 were identified. 
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Clinical Signs. 

 

 

 

The clinical signs for Teschovirus encephalomyelitis are mainly associated with 

neurological disturbances affecting the CNS [3]. 

A previous study have shown that incubation period averaged 13.5 days and 8.5 days for 

21 day-old pigs and 14 days-old pigs, respectively. CNS clinical signs included but were not 

limited to ataxia of the rear legs, excitement, paralysis, trembling with clonic and tonic spasms, 

recumbency, opisthotonus, nystagmus, paddling of the rear legs, flaccid paralysis and coma. The 

mean temperature for the 21 day-old pigs was 102.6 F and 102.2 F for the 14 day-old pigs. 

According to the results of this study, it appears that 14 day-old pigs were more susceptible to 

infection, with a shorter incubation period, higher temperature, and shorter disease course than 

21 days-old pigs. A percentage of animals will eventually recover given the proper care.[44]. 

The comparison between the highly pathogenic strain PTV 1-Konratice and the mild 

strain PTV 1- Talfan was characterized by the intranasal and oral inoculation in gnotobiotic pigs. 

In this experiment, all infected animals developed paraplegia regardless of the inoculation route. 

The authors also remarked that some of the animals regained use of their forelegs but majority 

remained recumbent until euthanized. The authors also introduce the idea that pneumonia 

associated with cases of Teschovirus encephalomyelitis could be caused by the prolonged 

recumbency and prostration shown by affected animals resulting in hypostatic congestion of the 

pulmonary parenchyma [42]. 

Huck et al. also compared the clinical course of the Konratice and Talfan strain by 

intracerebral inoculation of virus. Thirty-three and forty-six animals were inoculated with strains 
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Konratice and Talfan, respectively. A low dose (1.8 to 3.4 × 104 PFUs) and a high dose 
 

(8.0 × 104  and 1.7 × 107 PFUs) inoculum groups were made for each virus strain. The age of 

animals ranged from twenty-tree to thirty-three days old. The authors observed that the Konratice 

strain regularly caused severe disease characterized by sudden onset of paralysis followed by 

death of inoculated animals. In contrast, the Talfan strain caused a milder disease with a longer 

incubation period, ataxia, paresis and paralysis as main features, and clinical recovery by most 

animals. [67]. 

Experimental inoculation with pathogenic strains of PTV-1 have been found effective at 

inducing polioencephalomyelitis, neurological symptoms and diarrhea when the virus is 

administered solely by the intranasal route[79]. 

The pathogenicity of other strains has been also studied under experimental settings. Two 

serotypes previously isolated from brains from affected pigs, PTV-2 strain O3b and PTV-3 strain 

O2b were inoculated into germ free and pathogen free pigs. Polioencephalomyelitis and specific 

neurological signs including flaccid and spastic paralysis were noted in affected pigs[80]. 

Also in the US, animals infected with a non-characterized serotype of PTV, but 

homologous to PTV-1, presented clinical disease with signs such as fever, lethargy, recumbency, 

tremors, paddling movements, extensor rigidity, ataxia, and paralysis[81]. 

The main clinical sign during an outbreak of disease caused by a PTV-1 strain affecting 

diverse areas of Haiti, in 2009, indicated that posterior ataxia followed by paresis and/or 

paralysis was the most common clinical feature. These signs were evident on the second or third 

day of illness with an estimated morbidity of 60% and a mortality of 40% in affected animals 

[82]. 
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The presence of more than one serotype in different organs of affected animals suggest 

that co-infection by different serotypes of PTV is possible although its clinical relevance has not 

been completed elucidated [69]. 

 

 

Enumerated in Table 1 are common clinical signs described in cases of PTV clinical 

disease from a selected list of scientific paper and 

communications[39,40,42,44,52,56,57,61,67,70,72,79,81-86]. 

 

 

 

 

Nonspecific clinical signs. 
 

Other authors have described the occurrence of nonspecific clinical signs in naturally 

infected animals under experimental conditions. Fever, anorexia, and depression are signs 

commonly described in pigs inoculated using different routes or as consequence of natural 

infections [42,57,66,67,70,80,85,87,88]. 
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Table 1. Common PTV clinical signs described in literature. 

 

Clinical sign Reported frequency 

Ataxia 11 

Paralysis (Tetra; para) 11 

Paresis 11 

Fever 8 

Lateral recumbency 7 

Diarrhea 6 

Neural disorders (sic) 5 

Lethargy 3 

Stiffness of legs 3 

Convulsions 3 

Tremors 3 

Nystagmus 3 

Opisthotonus 3 

Paddling movements 2 

Excitable to sound stimuli 2 

Respiratory distress 2 

Vocalization 2 

Coma 2 

Locomotor disorders 1 

Extensor rigidity 1 

Bruxism 1 

Anorexia 1 

19 
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Gross Pathology 

 

Majority of authors indicate that no gross lesions were observed at the time of postmortem 

examination [1,5,11,41,43,69]. 

 

 

Histopathology 

 

One of the first pathological studies for this disease was conducted in 1954 by Manuelidis 

 

et al. [72]. 

 

This paper covers the microscopic findings of 300 pigs affected by different strains of the 

virus inoculated experimentally by different routes as other very important aspects of the disease. 

The authors recognized three different stages of the disease: early, midcourse and convalescent. 

In the early stage, the authors describe that a mild, focal, lymphocytic meningitis at the 

base of the brain and cerebellum is a common feature. This lymphocytic infiltration was 

described to be located around small vessels or forming independent cell nodules. In addition, 

the pons and medulla contained few cell nodules and infiltrations around the small vessels. 

Affected neurons demonstrated characteristic features such as chromatolysis of the Nissl 

substance and nuclear hyperchromatism. In contrast, spinal cord lesions were not commonly 

described during this stage. In the few cases where lesions were found in the spinal cord, the 

ventral horn of the cervical cord was affected; the thoracic, lumbar, or sacral cord were not 

affected. 

During the midcourse of disease most lesions concentrated in the ventral horns and dorsal 

horns of the spinal cord and no significant differences were noted between the cervical, thoracic, 
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lumbar, and sacral regions. Lymphocytic infiltration of the Virchow-Robin spaces with few 

plasma cells and histiocytes was observed in areas with or without neuronal damage. 

The pathological features described during the convalescent stage of disease indicates 

that the large damage induced by the infection was correlated with the decrease in number of 

neurons in the affected areas. In the cerebellum, the molecular and granular layers were 

diminished in size, and Purkinje cells were missing over large areas. Sections of spinal cord 

revealed obvious loss of neurons in the ventral horns and few lymphocytes and plasma cells were 

present around blood vessels in addition to the proliferation of astrocytes and microglial cells. In 

other regions of the CNS, perivascular infiltrations nor cell nodules were present. 

Similar microscopic lesions had been described by other authors under different 

experimental settings using other strains. 

Dardini et al. demonstrated that animals infected with PTV-1 Konratice developed a non- 

suppurative encephalomyelitis characterized by the degeneration and necrosis of neurons, 

particularly affecting the grey matter at the ventral horns of the spinal cord, the Purkinje cell 

layer of the cerebellum, the medulla oblongata, pons, midbrain, thalamus, and basal ganglia. A 

lymphocytic perivascular infiltration was commonly present in areas adjacent to the affected 

neurons. [44]. 

Long et al. described the lesions caused by PTV-2 strain O3b and PTV-3 O2b as a non- 

suppurative encephalomyelitis characterized by neuronal degeneration, neuronophagia and 

perivascular infiltration of advential cells and microglia. Lesions were commonly observed 

within the gray matter of the spinal cord, brainstem, cerebellum and less frequently in the 

cerebrum[80] [71]. 
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Yamada et al. demonstrated that animals challenged with PTV-1 strain Toyama 2002 had 

consistent perivascular infiltration of mononuclear cells, focal areas of gliosis, neuronal necrosis 

and neuronophagia in the brainstem, cerebellum, and spinal cord. Severe ganglioneuritis of the 

spinal ganglion and neuritis in the spinal root were also described [89]. 

In another study by Yamada et al., Teschovirus encephalomyelitis was experimentally 

induced in three-week-old piglets via intravascular inoculation. Similarly to other experiments, 

diffuse non-suppurative encephalomyelitis was observed in affected pigs. Furthermore, specific 

PTV antigens were detected by immunohistochemistry and positive staining was often associated 

with histologic lesions. Antigens were also detected in dorsal ganglion cells, spinal dorsal root, 

and spinal cord[70]. 

 

 

Epidemiology 

 

 

 

The Wild board (Sus scrofa) and domestic pig (Sus Scrofa f. domesticus) have been 

identified as the exclusive natural host for Teschovirus A[72]. It is unknown whether other 

animals are susceptible to natural infection[90]. The transmission of the virus to susceptible 

animals is through both indirect and direct contact with infected animals and their secretions. 

The virus is widely disseminated throughout the world and is ubiquitous in swine 

populations[2]. Teschovirus A has been identified in all continents except Antarctica. The 

presence of the virus or serological evidence has been reported in the following countries within 

the last century Czech Republic[91], Slovakia[92] , United Kingdom[10], Germany[93,94], 

Austria, Latvia, Poland[95], Romania, Belarus, Croatia, Hungary[6], Switzerland[59,96], 

Ukraine[97], Russia, Denmark[11], France[98], Italy[99], Spain[5], Sweden[86], Norway[92], in 
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Europe; Madagascar[73], Island of Reunion (France), South Africa[100], Uganda, in Africa[92]; 

Japan[17,87], China[101,102], Republic of China (Taiwan)[103], Republic of Korea[56], In 

Asia; Bolivia[64], Brazil[62], Colombia[92], Dominican Republic[104], Haiti[82], 

USA[16,81,105], Canada[15,85,92], in the Américas; and New Zealand[106] and 

Australia[28,107,108]. 

Surveys performed in different parts of the world indicate that the virus is widely 

distributed and affected herds generally show a high prevalence of infection. In Taiwan, a 

serological survey indicated that more than 70% of the swine population in this country were 

exposed to PTV-5. 

Another experiment carried out in China by Zheng et al., demonstrated a high 

seroprevalence across different strains of PTV in some northeast provinces of the country. In this 

experiment, it was found that 61.3% of 1384 sera samples were positive for PTV-8, although 

other serotypes (PTV-2, -4, -6) were also detected. This study also concluded that all sampled 

herds were seropositive for PTV. [102]. 

In Japan, 76.7% of 408 animals were serologically positive to different serotypes of 

PTV. In Spain, 47% of 600 porcine fecal samples surveyed were positive for PTV and 206 

isolates were obtained [5,109]. A six year cross-sectional study carried out in Czechoslovakia 

reported a high prevalence of PTV is swine showing that co-infection with different serotypes of 

PTV is a common epidemiological feature[110]. 

A survey involving the detection of Teschovirus A, Sapelovirus A and Enterovirus G in 

feces of domestic pigs and wild boars of Czech Republic between 2005 and 2011 documented 

that 69.4% of domestic pigs and 63.3% of wild boars were PCR positive to two or three different 

serotypes [111]. 
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In Madagascar, Taiwan and Haiti, the virus is considered endemic [79,82]. 

 

Outbreaks of highly virulent PTV-1 strains (Teschen disease) were associated with high 

mortality and mobility, and occurred sporadically throughout the world, although more recently, 

strains previously described as low virulent strains of PTV-1 (e.g. Talfan strain) have acquired 

notoriety [84]. 

Other serotypes of PTV (PTV 2-13) are considered of low virulence and much of their 

epidemiological burden is not known. 

The identification of the wild board as the natural reservoir for these viruses is commonly 

accepted although the transmission of the virus from domestic swine to the environment and 

consequently to wild boars is also an important epidemiologic characteristic to consider 

[112,113]. 

The epidemiological implications of animals of the genus Pecari (Peccary), Babyrousa 

 

(Babirusa) and Phacochoerus (Warthog) has not been investigated. 

 

It has been postulated that geographic location and climatic conditions can influence the 

prevalence and number of clinical cases. Infections can occur year-round in latitudes where the 

virus can survive during the winter season and it is not inactivated by low temperatures. In cold 

latitudes, the outbreaks of disease are commonly described to occur during the spring and 

summer seasons[114]. 

Given its socio-economic relevance, the disease was considered of major importance for 

international trade and commerce of animals and animal products. Since its publication in 1959, 

the FAO/WHO/ OIE Animal Health Yearbook included Teschovirus encephalomyelitis in a list 

of internationally notifiable diseases. In 1986, after the reorganization of the OIE classification 

system for animal diseases, “Teschen disease” was included with 16 other animal diseases as an 
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“OIE List A disease” under the code number A140. The criteria for inclusion to this list was 

defined by the OIE as a “Transmissible disease that has the potential for very serious and rapid 

spread, irrespective of national borders, that are of serious socio-economic or public health 

consequence and that are of major importance in the international trade of animals and animal 

products”. In 1995, the OIE reclassified and moved the disease to the “OIE List B diseases” 

under the code B526. In 2005, the OIE’s International Committee and regional commissions 

instructed the OIE headquarters to establish a single OIE list of notifiable diseases, and as a 

result of these directives, in 2006 the disease Teschovirus encephalomyelitis was eliminated and 

its notification was abolished. 

 

 

Prevention and Control Measures 

 

 

 

Complete eradication of the causal agent in most of commercial herds is a virtually 

impossible task. Usually, control measures primarily focus on decreasing the likelihood of the 

introduction of a highly virulent strain rather than on the treatment of affected animals. 

Disease control and spread have been successfully achieved by the implementation of 

non-specific strategies including stamping out of affected areas, vaccination in response to the 

outbreak, restriction of animal movements, official destruction of animal products, official 

disposal of carcasses and animal by-products, and disinfection of premises. 

The use of antivirals drugs to ameliorate clinical signs has not been investigated. 

 

Supportive therapy can be administered in pigs with polioencephalomyelitis. The efficacy of 

non-steroidal and steroidal anti-inflammatory drugs in cases of TE is not well documented in the 

scientific literature. 
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No efforts to raise PTV free herds have been documented although the accidental 

introduction of the virus in specific pathogen-free herds has been described [115]. 

Currently, disease prevention in countries where highly pathogenic strains of PTV are not 

endemic is attained mostly by practicing strict biosecurity measures. Additionally, a timely and 

appropriate diagnosis followed by the implementation of biosecurity measures theoretically 

should minimize the spread and perpetuation of disease in a specific population and geographic 

location. 

 

 

PTV-2 and PTV-11 strains 

 

PTV 11 strains 
 

As of March 1st 2017, the GenBank database contained four pathogenic PTV-11 

nucleotide sequences under the taxonomy ID: 363171. All strains were described to occur in 

Europe. These are the prototype strain Dresden, which was described by Hahnefeld et al. in 

1965[116]; Strain DS 1696/91 described by Appel et al. in 1991[117], and strains RD 181/01 

and 1008/88 isolated in different research facilities in Germany. 

 

 
Pathogenic strains 

 

Strain Dresden 

 

The prototype strain Dresden was first described by Hahnefeld et al. in 1965 and was 

initially catalogued as a PEV 1. The neuropathogenicity of this strain was first identified after an 

outbreak of disease identified in 1963 in the district of Dresden, Germany. This outbreak caused 

transient ataxia of varying severity and death in piglets of 4-6 weeks. The isolation of the virus 

was achieved by inoculating porcine kidney cells with CNS tissue homogenate. In 2001, Zell et 
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al. indicated that this strain, in addition to strains UKG 53/81 and DS 1969/91, should be 

recognized as a distinct serotype based upon their intrinsic antigenic and molecular similarities 

given the immunological reaction to specific monoclonal antibodies MAb 040/4B1 and MAb 

041/3C3 [118]. 

 

 

Strain DS 1696/91 

 

Strain DS 1696/91 was described by Addel et al. in 1995. This strain was identified and 

further isolated from brain homogenate samples collected from animals showing neurological 

symptoms compatible with Teschovirus encephalomyelitis at the Food and Veterinary 

Examination Office of the State of Schleswig-Holstein (Lebensmittel- und 

Veterinäruntersuchungsamt des Landes Schleswig-Holstein, LVUSH) Neumünster, 

Germany[119]. 

 

 

Strain RD 181/01 

 

Strain RD 181/01 was isolated in 2001, at the Food, Medical and Veterinary Examination 

Office of the state of Thüringer (Thüringer Medizinal-, Lebensmittel- und 

Veterinäruntersuchungsamt, LVLUAMV) Bad Langensalza, Germany[119]. 

 

 

Strain 1008/88 

 

Strain 1008/88 was isolated in 1988, from spinal cord of affected animals showing 

neurological disorders at the Food, Medical and Veterinary Examination Office of the state of 

Thüringer (Thüringer Medizinal-, Lebensmittel- und Veterinäruntersuchungsamt, TMLVUA) 

Bad Langensalza, Germany[119]. 
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Other strains 

 

Other nine PTV-11 strains are indexed in GenBank. The pathogenicity of these strains 

has not been assessed. Strain UKG 53/81 was initially isolated from feces of healthy animals at 

the Institute for Animal Health Pirbright Laboratory (IAHPL), England[119]. Strain Vir 2374/01 

was identified in Germany from a swine host. In Italy, La Rosa et al. identified six more PTV-11 

strains in feces from healthy animals[120]. In 2009, Buitrago et al. identified in Spain a strain 

designated CC82 from feces of healthy animals[109]. A list of PTV-11 strains identified for this 

thesis is available in Annex A. 

 

 

PTV-2 strains. 

 

Ten pathogenic PTV-12 strains are indexed in GenBank under the taxonomy ID: 138679. 

 

These are prototype strain T-80 (isolated in UK); Strains Vir 6711-12/83, Vir 6793/83, Vir 

480/87, Vir 2018/87, DS 756/93 and DS 183/93 (isolated in Germany), and two strains isolated 

in Asia: the Japanese Strain SFK10 (previously known as serotype J2) and Chinese Strain JF613. 

 

 

Pathogenic strains 

 

Strain T-80 

 

The PTV-2 prototype strain T-80 was originally isolated in 1960 by A.O. Betts et al. 

from the tonsils of healthy animals at Cambridge Veterinary School, England [121]. The 

neuropathogenicity of this strain was also demonstrated by Betts et al. when inducing CNS signs 

and histological lesions as polioencephalomyelitis in colostrum deprived, pathogen-free piglets. 

These animals were inoculated intranasally, orally or intracerebrally. The estimated incubation 
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period reported was between 7 to 20 days and classic clinical signs of Teschovirus 

encephalomyelitis were reproduced. The authors also described cellular lesions as neuronal 

degeneration and necrosis of CNS parenchyma, perivascular cuffing of Virchow-Robins spaces 

and multiple nodular areas of glial cells. Lesions were found particularly in the spinal cord and 

brainstem. 

 

 

Strains Vir 6711-12/83, Vir 6793/83, Vir 480/87, Vir 2018/87 

 

These four strains were originally isolated at the State Veterinary Examination Office 

(Staatliches Veterinäruntersuchungsamt Arnsberg, SVUA) in Arnsberg, Germany. All strains 

were isolated from brain samples of pigs showing CNS clinical signs compatible with 

Teschovirus encephalomyelitis[119]. 

 

 

Strains DS 756/93 and DS 183/93 

 

Both strains were isolated at Lebensmittel un Veterinäruntersuchungsamt des Landes 

Schleswig-Holstein (Food and Veterinary Examination Office of the State of Schleswig- 

Holstein, LVUSH), Neumünster, Germany. Strains DS 756/93 was isolated from a brain sample 

of CNS affected pigs. Strain DS 183/93 was isolated from an unknown sample from pigs 

showing neurological disorders[119]. 

 

 

Strain Sek 49/99 

 

Strain Sek 49/99 was isolated at the Institute for Animal Breeding, Animal Husbandry, 

and Animal Health (Institut für Tierzucht, Tierhaltung und Tiergesundheit, ITT), Oldenburg, 
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Germany. The virus was isolated from a pool of tissues (spleen, lymph nodes, lung and liver) 

from animals with non-specific reproductive and respiratory clinical signs[119]. 

 

 

Strains 2-AK-III and 12-PL 

 

Strains 2-AK-III and 12-PL identified and described by Szent Ivanyi et al [122]in 1963 in 

Hungary. 

 

 

Strain SFK10 

 

Japanese Strain SFK10 (previously known as serotype J2) was identified by Morimoto et 

al. in 1962 after its isolation from feces [123].The experimental inoculation of this strain did not 

induced clinical signs in inoculated animals although the presence of neuronal degeneration, glial 

nodules, and perivascular infiltration of mononuclear cells in CNS histological sections were 

evident in one piglet after 10 days post inoculation. 

 

 

Strain JF613 

 

The Chinese Strain JF613 was identified by Wang et al. in 2010[124]. This strain was 

isolated from brain samples of pigs suffering clinical disease characterized by fever, diarrhea, 

respiratory distress, lateral recumbency and paralysis of the rear legs. A virulence study was 

conducted in 5-week-old piglets (Negative for pathogens as PTV, PRRSV, CSFV and JEV) 

although no results were communicated. The authors also indicated that the origin of this strain 

could be the result of a natural recombination event and claimed that strain JF613 has a mosaic 

genomic structure compatible with two previously reported PTV-2 and PTV-5 isolates. 
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Strain o3b 

 

Strain o3b was identified by Kasza et al. in 1965[125]. The virus was isolated from brain 

samples of affected animals with polioencephalomyelitis. The pathogenicity of this virus was 

demonstrated by Long et al. by intracerebral inoculation and oral administration of the virus in 

germfree pigs, resulting in clinical disease [80]. The oral administration of the virus induced a 

more severe disease characterized by flaccid and spastic paralysis. A nonsuppurative 

encephalomyelitis was observed in histologic sections of CNS of affected animals with lesions. 

Neuronal degeneration, neuronophagia and perivascular cuffing were described as common 

histologic lesions. The authors indicate that lesions were widely distributed at the grey matter in 

all sections of cerebellum, brain stem and spinal cord evaluated. 

 

 

Strain 6335 

 

This U.S. strain was described by Janke et al. in 1988[66]. No CNS clinical disease was 

observed in animals orally inoculated with this strain. The inoculation of this strain in addition to 

a group A serotype 1 porcine rotavirus was assessed and animals developed watery diarrhea 18- 

24 hours post inoculation. The authors concluded that this PTV strain did not induced clinical 

signs nor macroscopic or histologic lesions by itself and suggested that coinfection with rotavirus 

A did not had any synergistic effect. On the contrary, authors indicated that strain 6335 could 

ameliorate the signs and lesions observed when compared to rotavirus infections alone. 
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Other strains 

 

Forty-nine more PTV-2 strains are indexed in GenBank. The pathogenicity of these 

strains has not been assessed. Thirty-two strains from feces were identified by a survey 

conducted by Buitrago et al. in Spain [5]. La Rosa et al. also identified in feces fifteen PTV-2 

strains in Italy[120]. Strain ZJ16LX0401 was identified in China in 2016. Strain Stendal 2532 

was reported by Zell et al. from an unknown sample provided by the National Veterinary and 

Food Research Office (Landesveterinär- und Lebensmitteluntersuchungsamt, LVLUASA) in 

Sachsen-Anhalt, Germany[119]. 
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Table 2. List of PTV-11 and PTV-2 pathogenic strains. 
 

Serotype GenBank Accession Strain Year of isolation Virus isolated from Country Reference 

 
AF296096 Dresden 1965 CNS Germany Hahnefeld et al. 

 
AF296121 DS 1696/91 1991 Brain Germany Appel et al. 

 
AY392536 RD 181/01 2001 N.A. Germany Zell et al. 

PTV-11 
AF296120 UKG 53/81 1981 Feces United Kingdom Zell et al. 

 
AY392550 1008/88 1988 Spinal cord Germany Zell et al. 

 
GQ293238 Vir 2374/01 2001 N.A. Germany Zell et al. 

 
AF296087 T-80 1960 Feces United Kingdom Betts et al. 

 
AF296110 Sek 49/99 1999 Organ pool Germany Zell et al. 

 
AF296107 Vir 6711-12/83 1983 Brain Germany Auerbach et al. 

 
AF296108 Vir 6793/83 1983 Brain Germany Auerbach et al. 

 
AF296109 Vir 480/87 1987 Brain Germany Auerbach et al. 

 
PTV-2 GQ293229 Vir 2018/87 1987 N.A. Germany Zell et al. 

 
AY392534 DS 756/93 1993 Brain Germany Zell et al. 

 
AY392533 DS 183/93 1993 N.A. Germany Zell et al. 

 
AY392542 2-AK-III 1963 Rectal swab Hungary Szent-Ivanyi et al. 

 
AY392541 12-PL 1963 Rectal swab Hungary Szent-Ivanyi et al. 

 
AB049554 SFK10 1965 Feces Japan Morimoto et al. 

 
GU446660 JF613 2010 Brain China Wang et al. 
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Diagnosis 

 

Subclinical infection is an important epidemiological feature shown by Teschovirus A. It 

is well established that PTV serotypes are ubiquitous in healthy swine populations and identified 

in field samples from pigs of all ages. The mere identification of the virus in feces does not 

necessarily indicate clinical disease. 

Historically, neurological, enteric, respiratory and reproductive signs have been reported 

in PTV outbreaks given the broad nature of clinical signs, an accurate diagnosis should be 

initiated upon proper identification of the different clinical syndromes associated with this virus. 

Infections caused by Teschovirus A, particularly those associated with PTV-1, have 

global relevance. Teschovirus encephalomyelitis was a List A notifiable disease to the World 

Organization for Animal Health (OIE) since the inception of the FAO/WHO/ OIE Animal Health 

Yearbook in 1959 until 2005 when it was removed from the OIE’s Terrestrial Animal Health 

Code. However, an exclusive chapter enumerating the accepted techniques for its diagnosis as 

the methods to identify this pathogen is still present in the OIE’s Manual of Diagnostic Tests and 

Vaccines for Terrestrial Animals. 

One of the objectives of the OIE’s Manual is to set worldwide accepted laboratory 

standards. This manual includes a section exclusively dedicated to Teschovirus 

encephalomyelitis and describes internationally regulated diagnostics techniques. The 

complementary diagnostic tests indicated for this disease includes histologic examination and 

immunohistochemistry, identification of the agent via virus isolation, indirect fluorescent 

antibody test (IFA), reverse-transcription polymerase chain reaction (RT-PCR) and serological 

tests as virus serum neutralization and enzyme-linked immunosorbent assay (ELISA). 
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In outbreaks of neuropathogenic strains of PTV, a presumptive diagnosis is primarily 

made upon the observation of suggestive clinical signs, identification of compatible 

histopathologic lesions and identification of the pathogen. Final corroboration can be achieved 

by the implementation of classical virologic techniques (virus isolation), immunological 

techniques (ELISA, virus serum neutralization, virus serotyping, etc.) and molecular diagnostic 

techniques (PCR, Next generation sequencing, etc.). An epidemiological investigation can be 

carried out in order to find evidence of potential previous outbreaks. 

In outbreaks with neurological signs, the recognition of non-specific early clinical signs 

as fever, lassitude and anorexia followed by the latter characteristic clinical signs of disease as 

changes in the gait, ataxia, tremors, opisthotonus, nystagmus, paralysis of cranial nerves and 

extremities (paraplegia and quadriplegia), convulsions, coma and death are indicative signs of 

disease caused by neurotrophic strains of PTV. 

In general, vast majority of studies report the absence of macroscopic lesions in outbreaks 

of neurological disease; although, non-specific findings such as pulmonary consolidation, 

lymphadenomegalia, hepatic congestion and fluid and gas filled intestines have been noted. 

Histological lesions commonly described in PTV outbreaks are indicative of a 

neurotropic virus however lesions are not pathognomonic of PTV infection. Other neurotrophic 

viruses such as Sapelovirus A, Classical swine fever virus, Japanese encephalitis virus, Porcine 

hemagglutinating encephalomyelitis virus, highly virulent strains of the Porcine reproductive 

and respiratory syndrome virus, Rabies virus and Suid herpesvirus 1 should be considered as 

differentials. Table 3 enumerates a list of differential diagnosis of disease. 
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Virus isolation from CNS tissues and subsequent serotyping of the virus are acceptable 

diagnostic methods to corroborate PTV infections. The finding of viral antigens in CNS by in 

situ immunocytochemistry allows the diagnostician to corroborate the diagnosis. The detection 

of PTV nucleic acids by PCR in CNS samples obtained from affected animals is also an 

acceptable diagnostic method to corroborate the diagnosis of PTV, although the results from this 

technique relies on the proper interpretation of results by the diagnostician. 

Cross-contamination of specimens during necropsy or shipment of samples is a factor to 

be considered at the time of interpretation. 

 

 

Table 4 enumerates different diagnostic techniques used as aid in the diagnosis of 

neurotropic infections caused by PTV. 
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Table 3. Differential diagnosis of Teschovirus encephalomyelitis. 
 
 

Viral agents Disease Agent 

 
Pseudorabies (Aujeszky disease) Suid herpesvirus 1 (Herpesviridae) 

 Classical swine fever Classical swine fever virus (Flaviviridae) 

 Sapelovirus A Sapelovirus A (Picornaviridae) 

 Japanese encephalitis Japanese encephalitis virus (Flaviviridae) 

 Porcine Hemagglutinating encephalomyelitis Porcine hemagglutinating encephalomyelitis virus (Coronaviridae) 

 Rabies Rabies lyssavirus (Rhabdoviridae) 

 
Porcine reproductive and respiratory syndrome 

Highly virulent strains of the porcine reproductive and respiratory syndrome virus 

(Arteriviridae) 

 PCV2-Associated Neuropathy Porcine circovirus type 2 (Circoviridae) 

Bacterial 

agents 
Edema disease Enterotoxigenic Escherichia coli (ETEC) 

 Bacterial meningoencephalitis cause by Streptococcus 

suis 
Streptococcus suis 

Toxic agents Salt intoxication  

 Lead poisoning  

 Insecticide poisoning  

 High levels of Aflatoxins (B1, B2, G1, G2)  

 
Ergotamine 

 

Other Hypoglycemia  

 Water deprivation  

37 
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Table 4. List of diagnostic techniques reported for the corroboration of neuropathogenic 

Teschovirus A infections. 
 

 

Diagnostic Technique Reference 

Necropsy Long et al. 

Histological examination Manuelidis et al. 

Immunohistochemistry Yamada et al. 

In situ immunohibridization Yamada et al. 

Fluorescence in situ hybridization OIE manual 

Gel based Polymerase chain reaction Palmquist et al. 

Nested Polymerase chain reaction Zell et al. 

Real time Polymerase chain reaction Cano et al. 

RT- LAMP Wang et al. 

Indirect fluorescent antibody test in cell 
culture 

OIE Manual 

Serum virus neutralization Dunne et al. 

Virus isolation Trefny et al. 

Enzyme-linked immunosorbent assay OIE Manual 

Next generation sequencing Matias Ferreyra et al. 
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CHAPTER 3. CASES OF TESCHOVIRUS ENCEPHALOMYELITIS IDENTIFIED A ISU- 

VDL DURING THE YEAR 2013-2016. 

 

 
Objective 

 

To assess the magnitude of cases of Teschovirus A affecting swine operations in North 

America, a focused search of the Iowa State University Laboratory Information Management 

System (ISU LIMS) was conducted to identify cases with a compatible diagnosis of Teschovirus 

encephalomyelitis. 

 

The first criterion required ISU-VDL submissions to test positive using a nested, gel based 

PTV PCR. This nested PCR technique also identifies other porcine picornaviruses including 

Sapelovirus A and Enterovirus G. The assay was developed by Zell et al. and detects PTV 

serotypes 1-11[126]. 

 

The second criterion used to identify Teschovirus A required submissions to demonstrate 

compatible histopathological lesions in the brain or spinal cord based on the assessment of a 

veterinary pathologist. 

 

This search was limited from 2013 to 2016, since 2013 was the first year the nested PCR 

assay used at the ISU-VDL. 

 

Results 

 
 

Thirty-two cases were identified that fulfilled the two requirements described previously. 

 

Thirty-one were submissions from US swine and included sixteen cases in Iowa, five in Illinois, 
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two cases in Nebraska, Indiana and Arkansas; and one case in Minnesota, Virginia, Ohio and 

Texas. Only one case was submitted from Quebec, Canada. 

During 2013, seventeen cases of PTV were identified to fulfil the criteria. Respectively, five, 

two and eight cases were identified during 2014, 2015 and 2016 (Figure 1). 

Cases of PTV identified by year 

18 17 

16 

14 

12 

10 
8 

8 

6 5 

4 
2 

2 

0 
2013 2014 2015 2016 

Year 

Figure 1. Cases of PTV identified by year at the ISU VDL 

Conclusion 

This search was merely conceived to illustrate background information obtained from cases 

summited to ISU-VDL from 2013 and 2016 and diagnosed as TE. No inference can be made 

upon the serotype given the nested PCR assay does not discriminate between the different 

serotypes. In addition, the frequency and distribution of cases does not represent the actual 

epidemiological prevalence of PTV cases occurring in North America and represents cases 

diagnosed as PTV-infection at ISU-VDL. 
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CHAPTER 4. POLIOENCEPHALOMYELITIS IN CESAREAN-DERIVED 

COLOSTRUM-DEPRIVED PIGS FOLLOWING EXPERIMENTAL INOCULATION 

WITH TESCHOVIRUS A SEROTYPE 2 OR SEROTYPE 11. 

Modified from a paper accepted for publication in Viruses (ISSN 1999-4915) 

Franco Matias Ferreyra 1, Bailey Arruda 1, Gregory Stevenson1, Kent Schwartz1, 

Darin Madson1, Kyoung-Jin Yoon1, Jianqiang Zhang1, Pablo Piñeyro1, Qi Chen1, Paulo 

Arruda1*
 

Veterinary Diagnostic Laboratory, Department of Veterinary Diagnostic & 

Production Animal Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA, 

USA 50011-1134. 

* Correspondence:paulohea@iastate.edu ; Tel.: +01-515-294-5750

Abstract: Teschovirus encephalomyelitis is a sporadic disease associated with 

Teschovirus A (PTV) serotype 1 and, less frequently, other serotypes. In recent years, the 

number of cases submitted to the Iowa State University Veterinary Diagnostic Laboratory 

with a history of posterior paresis has increased. Submission histories from various regions 

of the United States suggest a trend for clinical disease to persist in herds and affect a wider 

age-range of pigs than historically reported. Polioencephalitis and/or myelitis was 

consistently present and PTV was detected in affected neural tissue by PCR in a portion of 

cases. Sequencing from two clinical cases identified PTV-2 and PTV-11. To assess 

neuropathogenicity of these isolates, 5-week-old cesarean derived and colostrum deprived 

pigs were assigned to three groups: negative control (n=4), PTV-2-inoculated (n=7), and 

PTV-11-inoculated (n=7). Three PTV-2-inoculated pigs developed mild incoordination of 

mailto:paulohea@iastate.edu
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the hind limbs, one of which progressed to posterior ataxia. While all PTV-11-inoculated 

pigs showed severe neurological signs consistent with Teschovirus encephalomyelitis. 

Neurological clinical signs were not observed in sham-inoculated animals. All PTV-2- and 

PTV-11-inoculated pigs had microscopic lesions consistent with Teschovirus 

encephalomyelitis. To the author’s knowledge, this is the first description of experimental 

PTV-11 infection demonstrating the neuropathogenicity of PTV-11 in swine in United 

States. 

Keywords: Teschovirus encephalomyelitis; Teschovirus A; Porcine teschovirus; 

Porcine teschovirus 2; Porcine teschovirus 11; PTV; Poliomyelitis; Teschen disease; Talfan 

disease. 

1. Introduction

Teschovirus encephalomyelitis (TE), previously Teschen or Talfan disease, is a 

neurologic condition of pigs commonly characterized by locomotor disturbances including 

ataxia, paresis, and/or paralysis [3]. Teschen disease (also known as Klobouk’s disease) 

was first recognized in the Czech Republic in 1929 as a fatal encephalomyelitis of pigs 

caused by a highly pathogenic strain of Teschovirus A (formerly named Porcine enterovirus 

and then Porcine teschovirus)[91]. Teschovirus A consists of 13 (sero)types, porcine 

teschovirus (PTV) 1 to 13, and is a single-stranded, linear, non-segmented RNA virus of 

the genus Teschovirus, family Picornaviridae[1]. To date, outbreaks of mild disease have 

been described in United States (US) [17,52,81,84], although the most severe form of TE 
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caused by highly virulent strains of PTV-1 has not been reported. However, outbreaks of 

TE due to PTV-1 have been recently reported in Haiti, Dominican Republic, and 

Canada[82,85,104]. 

Historically, PTVs were classified within the genus Enterovirus based on viral 

morphology, cytopathic effect (CPE), serological assays and replication in different cell 

lines [17,25,26]. Recently, PTVs have been reclassified by nucleotide sequence matching, 

genomic organization, and phylogenetic analysis[126-128]. Porcine enterovirus (PEV)-1 to 

-7 have been renamed PTV-1 to -7 and PEV-11 to -13 were renamed PTV-8 to -10. PTV- 

11 to -13 are the (sero)types most recently identified[109,113,118]. Despite the reported 

high prevalence of PTV in feces, clinical disease is observed sporadically[5,6,129,130]. 

Although multiple serotypes have been identified and genetically characterized, the 

neuropathogenicity of some of these serotypes has not been fully elucidated. The aim of 

this study was to 1) develop an experimental model of TE and 2) determine the 

neuropathogenicity of the PTV-2 and PTV-11 isolates. 

2. Materials and Methods

Virus inoculum. Strains PTV-2 USA/IA65463/2014 and PTV-11 

USA/IA09592/2013 were isolated at the Iowa State University Veterinary Diagnostic Lab 

(ISU VDL) from samples of central nervous system (CNS) tissue from pigs with neurologic 

disease. These viruses were first identified using a previously described nested polymerase 

chain reaction (PCR)[131] and further characterized by virus isolation and molecular 
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sequencing of the VP1 capsid protein. For experimental inoculation, PTV-2 passage 8 and 

PTV-11 passage 7 were grown in porcine kidney 15 (PK-15; ATCC CCL-33) cell line. 

Nucleotide sequence data for both isolates is available in GenBank under accession 

numbers KY594021 (PTV-2 USA/IA65463/2014) and KY594022 (PTV-11 

USA/IA09592/2013). 

Next generation sequencing and phylogenic analysis. Complete genome sequences 

of PTV-2 USA/IA65463/2014 and PTV-11 USA/IA09592/2013 isolates were determined 

by next generation sequencing on MiSeq platform (Illumina, San Diego, CA) following 

previously established procedures[132]. Total DNA/RNA was extracted from virus cell 

culture and purified with MagMAX viral RNA isolation kit (Life Technologies, Carlsbad, 

CA) and a Kingfisher 96 instrument (Thermo Scientific, Waltham, MA)[133]. DNA was 

then removed with RNase-Free DNase Set (Qiagen, Valencia, CA) from the total 

DNA/RNA, and the remaining RNA was purified with Agencourt® RNAClean® XP 

(Beckman Coulter, Indianapolis, IN) kit according to the manufacturer’s directions. 

Purified RNAs were fragmented to approximately 250bp and reverse transcribed to double 

stranded DNAs with NEXTflex™ Rapid RNA-Seq Kit. DNA library was constructed with 

Nextera XT DNA library preparation kit (Illumina, San Diego, CA). Sequencing was 

performed on MiSeq with 300-cycle MiSeq Reagent Micro Kit v2 (Illumina, San Diego, 

CA) to generate paired-end 2 x 150 bp reads for each sample. PTV sequences were 

extracted from raw sequencing output with BWA-MEM (v 0.7.15)[134] as previously 
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described with modification[135]. Specifically, reference genome library in the analysis 

pipeline was built by searching against NCBI nucleotide database with query ‘(complete 

genome) AND “Teschovirus” [porgn:_txid118139]’. Extracted PTV fragments were 

assembled with ABySS (v 1.5.2)[136] and SeqMan Pro version 11.2.1 (DNASTAR, Inc., 

Madison, Wisconsin) as previously described[133]. For phylogenic analysis, both PTV-2 

USA/IA65463/2014 and PTV-11 USA/IA09592/13 were aligned with 79 PTV polyprotein 

sequences obtained from GenBank. Multiple sequence alignment and sequence 

comparisons were carried out using the ClustalW algorithm by Geneious® R9 software. 

Phylogenetic trees were reconstructed with the Neighbor Joining (NJ) method using the 

Tamura-Nei model by Geneious® R9 software. The confidence of the internal branches 

was evaluated performing 100 bootstrap replications. 

Animals. Eighteen cesarean-derived colostrum-deprived pigs (CDCD) were 

purchased from a commercial source. Fecal swabs were collected 5 days prior to 

inoculation and tested using a nested PCR targeting PTV, Sapelovirus A and Enterovirus G 

[20]. All samples were negative. All procedures were approved by the Institutional Animal 

Care and Use Committee of Iowa State University (Log Number: 6-15-8040-S). 

Experimental design and clinical evaluation. Pigs were randomly assigned to three 

treatment groups: negative control (n=4); PTV-2-inoculated (n=7); and PTV-11-inoculated 

(n=7). Each group was housed in separate rooms and fed ad libitum with commercial feed. 
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Pigs were sedated with intramuscular injection of Telazol 500mg, Ketamine 250mg, 

Xylazine 250mg at 4.4mg/kg prior to inoculation. The inoculum was administrated 

intravenously using a 25-gauge butterfly catheter (Terumo™ Surflo™, Terumo 

Corporation; Shibuya, Tokyo, Japan) ensuring the delivery of virus. Negative control 

animals were inoculated with 3 ml of Eagle’s minimum essential medium (MEM); animals 

in PTV-2- and PTV-11-inoculated groups were inoculated with 3 ml of 106 TCID50/ml of 

PTV-2 USA/IA65463/2014 or PTV-11 USA/IA09592/2013 (Table 1). Animals were 

evaluated every 48 hs for the presence of clinical signs (Table 2). Serum samples were 

collected on day post-inoculation (DPI) 0, 11 and 21. 

Table 1. Experimental design. 

Groups Inoculum Passage # of animals 
Route of 

inoculation 

Control Cell culture media1
 - 4 Intravenous 

PTV-2 106 TCID50 PTV-2 8 7 Intravenous 

PTV-11 106 TCID50 PTV-11 7 7 Intravenous 

1 Eagle’s minimum essential media. 

Table 2. Mentation and ambulation scoring system. 

Score Mentation Ambulation Score 

0 Normal Normal 

1 Reduction in alertness Mild incoordination of rear legs 

2 Marked depression and head tilt Intermittent ataxia of rear legs 

3 2 plus seizures or opisthotonus 
Anterior and/or posterior ataxia +/- 

knuckling 

4 
3 plus events of seizures and 

opisthotonus 

Posterior paresis, paralysis or 

quadriparesis 
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Necropsy. Eight pigs were necropsied at DPI 11 (negative control: n=2; PTV-2- 

inoculated: n=2; PTV-11-inoculated: n=4). At DPI 16, a PTV-2-inoculated pig was 

necropsied due to clinical signs. The remaining piglets were necropsied at DPI 21. Prior to 

euthanasia a video of each animal was taken. A set of tissues including cerebrum; 

cerebellum; brainstem; spinal ganglion; sciatic nerve; and cervical, thoracic, and lumbar 

sections of spinal cord were fixed in 10% formalin for histopathologic examination. 

Histopathologic examination. All nervous system tissues were processed for 

routine histopathologic evaluation. Briefly, after 48 hr fixation on 10% buffered neutral 

formalin, tissue were embedded in paraffin blocks, cut on 4 μm sections, and stained with 

hematoxylin and eosin. All sections were scored by two veterinary pathologists (PA and 

BA) double blinded to the study. Lesions were scored based on foci of gliosis and cellular 

infiltration of Virchow-Robins spaces (Table 3). 

Table 3. Histopathologic severity score. 

Score # of cell layers in Virchow-Robin spaces Areas of gliosis 

0 None None 

1 1 1-2 foci 

2 2 3-4 foci 

3 3 > 4 foci 

4 >3 - 
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Serum neutralization test. Antibody neutralizing activity was evaluated at 0, 11 and 

21 DPI. Results were corroborated by performing an indirect immunofluorescence assay 

(IFA). Briefly, all sera samples were inactivated at 56°C for 30 min and aliquots of 75 µl 

were two-fold diluted in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 

5% fetal bovine serum, 100 I.U./ml penicillin, 100 µg/ml streptomycin, 50 µg/ ml 

gentamicin and 0.25 µg/ml amphotericin B. An equal volume of diluted serum and PTV-2 

or PTV-11 at 150 TCID50/75 μl was incubated for 1 hr at 37°C in a 5% CO2 humidified 

atmosphere. Afterward, 100 μl of the serum-virus mixture was added to microplate wells 

containing pre-confluent PK-15 monolayers and incubated at 37°C. Cell controls were set 

up by adding 100 µl of DMEM to monolayers. Virus controls were made adding residual 

incubated virus stock to monolayers. After three days, monolayers were assessed daily for 

the presence of CPE. On the fifth day, cells were fixed with a solution of 80% ethanol at 

4°C and infected cells were incubated with 50 μl of Porcine teschovirus/enterovirus 

antiserum (reagent code: 362-PDV, National Veterinary Service Laboratory, Ames, IA, 

USA) for 1 hr at 37°C, followed by 3 washes with PBS-T. Cells were incubated with 50 μl 

of fluorescein isothiocyanate (FITC) labeled anti-swine IgG (gamma) (KPL Inc. 

Gaithersburg, Maryland, USA) and incubated for 1 hr at 37°C. The presence of positive 

infected cells was confirmed by fluorescence microscopy (OLYMPUS IX71; Olympus 

Corporation, Tokyo, Japan). The reciprocal of the highest serum dilution resulting in >90% 

reduction of staining as compared to the negative serum control was defined as the VN titer 

of the serum. A VN titer of ≥8 was considered positive. 
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Real-time reverse transcription polymerase chain reaction. For the extraction of 

nucleic acids from CNS tissues, pooled sections of brainstem, cerebellum, cerebrum, and 

spinal cord from each animal were homogenized with Earl’s minimum media. Feces were 

collected at the time of necropsy and immersed in 1ml of PBS. Both samples were stored at 

-80°C until further processing. Briefly, nucleic acids were extracted from aliquots of 50 µl 

of sample using MagMAX™-96 Total RNA Isolation Kit (Applied Biosystems, Life 

Technologies, Carlsbad, CA, USA) and a KingFisher™ Flex Purification System (Thermo 

Fisher Scientific) following the instructions of the manufacturer. Primer and probe 

combinations for 5’ Taq nuclease assay using fluorescent 3’ minor groove binding DNA 

probe were designed targeting the 5’ UTR. Primer and probe sequences are: PTV-forward 

GGTGGCGACAGRGTACAGA, PTV-reverse CCTGCATTCCCRTACAGGAACT and 

PTV-probe FAM- TGCRTTGCATATCCCTAG-MGB-BHQ. Amplification was carried 

out with a commercial RT-PCR kit (QuantiTect Virus + ROX Vial Kit, Qiagen), according 

to the manufacturer's instructions. The final protocol consisted of the addition of 5 μl of 

isolated RNA to 20 μl of RT-PCR mix (5 μl of 5x QuantiTect Virus Master Mix, 0.25 μl of 

QuantiTect Virus RT Mix, 1.0 μl XENO LIZ internal control reagent, Life Technologies, 

plus primers, to a final concentration of 0.4 μm; fluorogenic TaqMan MGB probe, to a final 

concentration of 0.2 μm; and RNase-free water up to 20 μl), and then the tubes were 

subjected to a first RT step at 50°C for 20 min, followed by 5 min at 95°C  and 40 cycles of 

15 s at 95°C and 1 min at 60°C. 
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Virus re-isolation. For all animals, aliquots of CNS tissue homogenate used for 

PCR were centrifuged at 800 g for 10 minutes at 4°C and supernatants were filtered using 

0.22 μm filters (Millex, Millipore). A 100 µl aliquot was inoculated onto individual wells 

containing pre-confluent PK-15 monolayers and incubated for 1 hr at 37°C. After this step, 

the initial aliquots were discarded and culture plates were replenished with 100 µl of 

DMEM and incubated at 37 °C for 5 days and were examined daily for CPE. On the fifth 

day after a freeze-thaw cycle, the media from each well was collected separately and 

divided into two fractions of 50 µl each. From these, one fraction was used to re-inoculate 

culture plates containing pre-confluent PK-15 monolayers and the other fraction was 

subjected to PCR. The reinoculated culture plates were incubated for 5 days and CPE was 

examined daily. After this, culture plates were subjected to immunofluorescence staining to 

corroborate the re-isolation as described in the serology section. 

3. Results

Next generation sequencing and phylogenic analysis. The genomic sequences of 

PTV-2 USA/IA65463/2014 isolate and PTV-11 USA/IA09592/2013 were determined using 

next generation sequencing technology. Phylogenetic analysis based on the polyprotein 

nucleotide sequence of PTV-2 and PTV-11 isolates identified in this study together with 

other PTV- 1 to -13 sequences were conducted. Based on the VP1 nucleotide sequence 

PTV-2 USA/IA65463/2014 clustered with other PTV-2 isolates and the PTV-11 
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USA/IA09592/2013 clustered with other PTV-11 isolates. Pairwise comparison of the 

nucleotide sequence of the polyprotein revealed that the PTV-2 USA/IA65463/2014 had 

82.5%-89.25% nucleotide identity with 12 other PTV-2 isolates while the PTV-11 

USA/IA09592/2013 had 85.8%-87.2% nucleotide identity with 4 other PTV-11 isolates 

(Fig 1A). Additional phylogenic analysis of the VP1 and 2/3ABC3D coding regions also 

corroborated that these two isolates cluster with other members of the PTV-2 and PTV-11 

serotypes, respectively (Figure 1B, C). 
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A Polyprotein 

Figure 1A. Phylogenic trees illustrating the genetic relation of 79 unique polyprotein 

sequences with isolates USA/ IA65463/2014 PTV-2 and USA/IA09592/2013 PTV-

11. Polyprotein phylogenic tree (A). Scale represents nucleotide substitutions per site.
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B VP1 

Figure 1B. Phylogenic trees illustrating the genetic relation of 79 unique polyprotein 

sequences with isolates USA/ IA65463/2014 PTV-2 and USA/IA09592/2013 PTV-

11. VP1 gene phylogenic tree (B) Scale represents nucleotide substitutions per site.
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C 2/3ABC3D 

Figure 1C. Phylogenic trees illustrating the genetic relation of 79 unique polyprotein 

sequences with isolates USA/ IA65463/2014 PTV-2 and USA/IA09592/20 coding 

region2/3ABC3D phylogenic tree (C). Scale represents nucleotide substitutions 

per site. 
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Clinical evaluation. No clinical signs were observed in control animals, and all 

pigs remained cognitively aware throughout the study. A single pig in the PTV-2- 

inoculated group developed posterior ataxia at DPI 13 (Supplemental video 1). Three 

animals in the PTV-2-inoculated group developed mild incoordination of hind limbs 

starting at 15 DPI and partially recovered 4 days later. All animals in the PTV-11- 

inoculated group developed signs consistent with TE including hind limb incoordination, 

ataxia, posterior paresis and quadriparesis (Supplemental video 2) starting at DPI 9. 

Mentation and ambulation scoring results are summarized in Table 4. A majority of virus 

inoculated pigs (PTV-2: n= 5 and PTV-11: n=7) developed a nonspecific mild diarrhea 

beginning at DPI 7 (PTV-2) and DPI 8 (PTV-11) 

Necropsy and histopathologic examination. Macroscopic examination of control 

and infected groups was unremarkable. All animals in the PTV-2-inoculated and PTV-11- 

inoculated groups presented histological lesions in the spinal cord ganglia; cervical spinal 

cord, thoracic spinal cord, lumbar spinal cord; obex; pons; and midbrain (Figure 2 and 

Table 5). The severity of the histological lesions at different levels of the spinal cord were 

commonly higher in the PTV-11-inoculated group compared to PTV-2-inoculated group. 

Lesions were noted less commonly in the cerebellum, cerebrum at the level of the 

diencephalon and frontal cortex in all virus inoculated pigs (Figure 2 and supplemental 

Figure 1). 
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Table 4. Clinical evaluation by animal 

Serotype 
Animal

ID 

Mentation 

score 

Ambulation 

score¹ 
Ambulation score by DPI² Diarrhea 

1 3 5 7 9 11 13 15 17 19 21 

61 0 2 0 0 0 0 0 0 0 1 2 2 0* + 

67 0 0 0 0 0 0 0 0* - - - - - - 

68 0 2 0 0 0 0 0 0 0 1 2 1 0* - 

PTV-2 72 0 3 0 0 0 0 0 0 2 3* - - - + 

73 0 2 0 0 0 0 0 0 0 2 2 0 0* + 

74 0 0 0 0 0 0 0 0* - - - - - + 

76 0 0 0 0 0 0 0 0 0 0 0 0 0* + 

64 0 2 0 0 0 0 0 2 2 2 2 2 2* + 

65 0 3 0 0 0 0 0 3* - - - - - + 

70 0 4 0 0 0 0 2 4* - - - - - + 

PTV-11 71 0 2 0 0 0 0 2 0 0 0 0 0 0* + 

75 0 4 0 0 0 0 2 4* - - - - - + 

77 0 4 0 0 0 0 2 4* - - - - - + 

78 0 3 0 0 0 0 0 3 3 3 3 2 2* + 

¹Highest ambulation score noted. ² Recorded ambulation score by day post inoculation. *Last registered score for that animal. 

56 
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Table 5. Histopathologic severity score and distribution of lesions. 

Severity score1 Distribution 

Location Control PTV-2 PTV-11 PTV-2 PTV-11 

Spinal ganglia 0 3 3 100% 100% 

Cervical spinal cord 0 4 5 100% 100% 

Thoracic spinal cord 0 3 5 100% 100% 

Lumbar spinal cord 0 5 6 100% 100% 

Sciatic nerve 0 0 0 0% 0% 

Obex 0 4 6 100% 100% 

Pons 0 4 5 100% 100% 

Midbrain 0 4 5 100% 100% 

Cerebrum plus 

diencephalon 
0 2 4 86% 71%

Cerebellum 0 1 3 57% 71% 

Front cortex 0 1 2 57% 71% 
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Table 6. PCR and SVN results. 

Necropsy DPI 
PCR (CT) 1 SVN DPI² 

Feces CNS 0 11 21 

21 0 0 1⁄2 1⁄2 1⁄2 

21 0 0 1⁄2 1⁄2 1⁄2 

11 0 0 1⁄2 1⁄2 - 

11 0 0 
1⁄2 1⁄2 

- 

21 26.16 33.2 1⁄2 1/16 1⁄32 

11 18.23 27.8 1⁄2 1/16 - 

21 26.24 31.6 1⁄2 1/32 1/16 

16 18.72 30.5 1⁄2 1/16 - 

21 22.62 32.4 1⁄2 1/16 1/32 

11 18.79 26.9 1⁄2 1/16 - 

21 24.78 28.6 
1⁄2 

1/16 1/16 

21 21.75 31.9 1⁄2 1/64 1/64 

11 18.59 26.2 1⁄2 1/64 - 

11 17.78 24.4 1⁄2 1/32 - 

21 21.64 31.3 1⁄2 1/32 1/64 

11 18.57 24.6 1⁄2 1/128 - 

11 20.0 24.4 1⁄2 1/32 - 

21 21.92 32 
1⁄2 

1/16 1/32 

¹ Lowest cycle threshold value in CNS samples and feces collected at necropsy. ² Serum virus 

neutralization assay at day post inoculation. ³Eagle's minimum essential media. 
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Figure 2. Pig #74, inoculated with PTV-2 (DPI 11). Lymphoplasmacytic myelitis with 

expansion of the Virchow-Robin spaces (*) and multifocal areas of gliosis (▲) in cervical spinal 

cord (A), lumbar spinal cord (B), and midbrain (C); Pig #77 inoculated with PTV-11 (DPI 11) 

Lymphoplasmacytic myelitis with expansion of the Virchow-Robin spaces (*) and multifocal 

areas of gliosis (▲) in cervical spinal cord (D), lumbar spinal cord (E), and midbrain (F). 

Serum neutralization test. Serology results are summarized in Table 6. No antibodies 

against PTV-2 and PTV-11 were detected at DPI 0. Neutralizing antibodies were detected at DPI 

11 in all virus inoculated animals and remained detectable at 21 DPI. 

Polymerase chain reaction. PCR results are summarized in Table 6. PTV RNA was not 

detected in feces or CNS tissue in negative control animals. PTV RNA was detected in feces and 

CNS tissue in all infected animals in each treatment group at time of necropsy. 

Virus re-isolation. CPE and positive IFA results were detected in all samples from virus 

inoculated animals. PTV RNA was detected by PCR in all cell culture supernatant samples. 

Results are summarized in Table 7. 
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Table 7. Results of virus isolation attempts on CNS tissues from pigs inoculated with 

PTV-2 or PTV-11. 

Inoculum Animal ID CPE P0 CPE P1 IFA P1 PCR P1¹ 

61 + + + 33.87 

67 + + + 18.36 

68 + + + 35.13 

PTV-2 72 + + + 31.52 

73 + + + 33.13 

74 + + + 22.11 

76 + + + 31.85 

64 + + + 34.2 

65 + + + 28.78 

70 + + + 28.42 

PTV-11 71 + + + 21.57 

75 + + + 28.03 

77 + + + 28.14 

78 + + + 34.08 

¹ Lowest CT detected for that animal. CPE= Cytopathic effect. IFA= Indirect 

immunofluorescence. P0=Passage 0. P1= Passage 1. 

4. Discussion

A porcine TE model was developed that successfully demonstrated the 

neuropathogenicity of PTV-2 and PTV-11 serotypes. A majority of pigs in the virus inoculated 

groups developed mild hind limb incoordination to quadriparesis. The most severe clinical signs 

were noted in PTV-11-inoculated animals; however, all pigs in virus-inoculated groups 

developed histologic lesions consistent with TE. 

Next generation sequencing of isolates USA/IA65463/2014 and USA/IA09592/2013 

and subsequent phylogenetic and comparative sequence analyses confirmed these two field 

isolates as PTV-2 and PTV-11, respectively. USA/IA65463/2014 PTV-2 is genetically closely 

related to 3 European strains (AY392534, GQ293229, AY392533) isolated from CNS tissues of 
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swine with CNS disorders, and to a Chinese strain (GU446660) isolated from CNS tissues of 

swine with enteric, respiratory and CNS signs. USA/IA09592/2013 PTV-11 is genetically related 

to PTV-11 prototype strain (AF296096)[118] and three other PTV-11 strains (AY392550, 

GQ293238, AY392536) isolated in Europe. Each strain was isolated from CNS tissue of pigs 

with CNS disorders, with the exception of GQ293238 whose background information was not 

available[119]. The inconsistencies shown in the phylogenic trees for VP1 and 2/3ABC3D 

nucleotide genes when compared to the polyprotein gene tree agrees with previous report by 

Villanova et al [137]. 

Although this study was not conceived to compare the pathogenicity of these strains, 

less severe clinical signs were observed in the PTV-2-inoculated animals than in PTV-11- 

inoculated animals. Intermittent ataxia was observed in three animals and ataxia was noted in 

one animal inoculated with PTV-2. All animals in the PTV-11-inoculated group developed 

clinical signs consistent with TE with three animals developed quadriparesis. Based on the 

number of animals that developed clinical signs consistent with TE, the severity of clinical signs 

and histologic lesions, it appears that USA/IA65463/2014 PTV-2 is less virulent than 

USA/IA09592/2013 PTV-11. However, the authors recognize that the small sample size used in 

this study and inoculation route limits the interpretation of the findings and/or extrapolation to 

field situations. It is interesting to note that despite the mild clinical signs noted in the PTV-2- 

inoculated group, histologic lesions were observed in all animals. 
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To our knowledge, this is the first experimental inoculation using a PTV-2 

autochthonous U.S. strain after the initial description of PTV-2 strain O3b made by Long at al. 

in 1966[80]. The distribution and severity of lesions are similar in both studies. Lesions are 

widely distributed in the CNS including spinal cord, brain stem, and cerebellum and to a lesser 

extent the cerebrum. 

This is the first description of PTV-11 in U. S. Originally serotype PTV-11 was 

identified by Hahnefeld et al. as a PEV-1 strain in 1965[116], and was further characterized as 

PTV-11 by Zell el al. in 2001[118]. The comparative neuropathogenicity of European PTV-11 

strains and this novel PTV-11 identified in the United States is not known. 

Further work is warranted to assess the prevalence and geographic distribution PTV 

serotypes in U.S. 
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Supplementary Materials: 

Figure S1: Pig #72, inoculated with PTV-2 (DPI 11). Lymphoplasmacytic myelitis with 

expansion of the Virchow-Robin spaces (▲) and multifocal areas of gliosis (*) in the cervical 

spinal cord (A) and lymphoplasmacytic ganglioneuritis(B). Pig #70 inoculated with PTV-11 

(DPI 11) Lymphoplasmacytic myelitis with expansion of the Virchow-Robin spaces (▲) and 

multifocal areas of gliosis (*) in the thoracic spinal cord(C) and lymphoplasmacytic 

ganglioneuritis (◄) in spinal ganglion(D). 
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Supplemental Video 1. Hind limb ataxia, PTV-2-inoculate, pig #72, day post- 

inoculation 16. Supplemental Video 2. Paresis, PTV-11-inoculated, pig #70, day post- 

inoculation 10. (Videos available at www.proquest.com) 
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CHAPTER 4. DETECTION OF TESCHOVIRUS A SEROTYPE 2 AND 11 BY RT-qPCR IN 

SAMPLES FROM EXPERIMENTALLY INOCULATED CESAREAN-DERIVED 

COLOSTRUM-DEPRIVED PIGS WITH TESCHOVIRUS ENCEPHALOMYELITIS. 

Abstract. Teschovirus encephalomyelitis is clinically characterized by paresis, 

paralysis, and ataxia and is caused by Teschovirus A (formally porcine teschovirus (PTV)). 

Historically, PTV serotype 1 has been recognized as one of the most pathogenic serotypes, 

although other serotypes cause disease. In a previous study, 5-week-old cesarean-derived 

colostrum-deprived piglets developed encephalomyelitis following intravenous inoculation of 

strain PTV-2 USA/IA65463/2014 (n=7) or PTV-11 USA/IA09592/2013 (n=7). A real time qRT 

-PCR was used to detect PTV nucleic acids in various sample types from this study. Of 154 

samples tested, PTV RNA was detected in 97 samples (63%). PTV was detected in 100% of 

samples from the cervical spinal cord, lumbar spinal cord, and mesenteric lymph node and 93% 

of samples from the thoracic spinal cord, spleen, and tracheobronchial lymph node.  PTV was 

detected less commonly in the cerebrum (43%), lung and liver (21%), and heart and kidney 

(14%). The mean Cq value of tissue samples was 32.31 compared to a mean Cq of 22.86 and 

32.46 in fecal and sera samples, respectively. Shedding of PTV was detected in feces of all 

inoculated piglets at 4 days post inoculation (DPI), and all live animals continued to shed until 

euthanasia at 21 DPI.  Viremia was detected in all PTV inoculated animals at 4 DPI; however, 

viremia was inconsistently detected in different animals until the termination of the study.  In this 

study, we quantified the detection of PTV nucleic acids in feces, serum, and various sample 

types and identified that cerebrum, while part of the central nervous system, may not be the best 

sample type to detect PTV in animals with TE.  This is the first study assessing viral shedding, 



www.manaraa.com

66 

viremia and distribution by qRT-PCR to detect PTV-2 and PTV-11 in experimentally infected 

pigs with Teschovirus encephalomyelitis. 

Introduction 

Teschovirus encephalomyelitis (TE), previously Teschen or Talfan disease, is a 

neurologic condition of pigs commonly characterized by locomotor disturbances including 

ataxia, paresis, and/or paralysis [3]. Teschen disease (also known as Klobouk’s disease) was first 

recognized in the Czech Republic in 1929 as a fatal encephalomyelitis of pigs caused by a highly 

pathogenic strain of Teschovirus A (formerly named Porcine enterovirus and then Porcine 

teschovirus)[91]. Teschovirus A consists of 13 (sero)types, porcine teschovirus (PTV) 1 to 13 

and is a single-stranded, linear, non-segmented RNA virus of the genus Teschovirus, family 

Picornaviridae[1]. The virus possesses a 28-30 nm icosahedral cáspside enclosing its genome. 

The positive-sense single-stranded linear RNA genome is approximately 7.8 kb long and 

encodes a single mRNA transcript [4,5]. Only one open reading frame is described, encoding a 

polypeptide that is cleaved post-translationally in the different structural and non-structural 

proteins [6]. 

Characteristic histologic lesions caused by PTV infections that result in TE include 

expansion of Virchow-Robin spaces by lymphocytes, plasma cells, and macrophages, multifocal 

areas of gliosis, and neuronal necrosis with satellitosis commonly in the spinal cord and 

brainstem and less commonly in the cerebrum [7,8,9,10]. Historically, PTV-1 has been 

recognized as one of the most pathogenic serotypes, although other serotypes have caused TE 

[11,12]. Hence, most information about the pathogenicity, epidemiology and control of disease 

relies on data from studies involving PTV-1. In a recent study, PTV-2 USA/IA65463/2014 and 
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PTV-11 USA/IA09592/2013 were shown to cause lesions consistent with TE in all inoculated 

cesarean-derived colostrum-deprived pigs and PTV was detected in the central nervous system 

tissue of affected animals. To the authors’ knowledge, there is no information available in the 

scientific literature about the viral distribution, viral shedding in feces, or viremia of PTV 

serotypes 2 and 11 in experimentally infected animals. Therefore, the objective of this study was 

to describe the detection of PTV in multiple samples types, feces, and serum using a qRT-PCR in 

pigs with TE. 

Materials and methods 

Samples. In a previous experiment, eighteen colostrum deprived cesarean derived 5- 

week-old pigs were intravenously inoculated with one of two (sero)types of Teschovirus A or cell 

culture media. Pigs were divided into three groups and housed separately by inoculum: 

Minimum essential media (n=4), strain PTV-2 USA/IA65463/2014 (n=7) or strain PTV-11 

USA/IA09592/2013 (n=7) (GenBank accession KY594021 and KY594022, respectively). Sera 

and fecal swabs were collected at day post inoculation (DPI) 0, 4, 7, 11 and 21 from all live 

animals. Animals were euthanized after showing clinical signs. Eight animals were euthanized at 

DPI 11 (control group=2, PTV-2 group=2, PTV-11 group=4), one animal from the PTV-2 group 

at DPI 16, and nine animals at DPI 21 (control group=2, PTV-2 group=4, PTV-11 group=3). At 

time of necropsy, the cerebrum; sections of cervical, thoracic, and lumbar spinal cord; heart, 

lung, liver, kidney, spleen, and mesenteric and tracheobronchial lymph nodes were collected. All 

samples were stored at -800C until further processing. 
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Reverse-transcription quantitative polymerase chain reaction. For the extraction of 

nucleic acids, 1 gram of the above-mentioned tissue samples from each animal was homogenized 

with 10 mL of Earl’s minimum media. For fecal swabs, feces were collected at each time point 

an immersed in 1ml of PBS. Blood samples were collected at each time point and centrifuged at 

2400 rpm for 10 minutes and serum was collected. Briefly, aliquots of 50 µl of sample were 

treated with MagMAX™-96 Total RNA Isolation Kit (Applied Biosystems, Life Technologies, 

Carlsbad, CA, USA) and processed in a KingFisher™ Flex Purification System (Thermo Fisher 

Scientific) following the instructions of the manufacturer. Primer and probe combinations for 5’ 

Taq nuclease assay using fluorescent 3’ minor groove binding DNA probe were designed 

targeting the 5’ UTR. Primer and probe sequences are: PTV Forward primer: 

GGTGGCGACAGRGTACAGA, PTV Reverse primer: CCTGCATTCCCRTACAGGAACT, 

PTV Probe: FAM- TGCRTTGCATATCCCTAG-MGB-BHQ. Amplification was carried out 

with a commercial RT-PCR amplification kit (QuantiTect Virus + ROX Vial Kit, Qiagen), 

according to the manufacturer's instructions. The final mastermix consisted of 5 μl of template 

and 20 μl of RT-PCR mix (5 μl of 5x QuantiTect Virus Master Mix, 0.25 μl of QuantiTect Virus 

RT Mix, 1.0 μl XENO LIZ internal control reagent, Life Technologies, 0.4 μM forward and 

reverse primers; fluorogenic TaqMan MGB probe, to a final concentration of 0.2 μm; and 

RNase-free water up to 20 μl). The reaction consisted of an RT step at 50°C for 20 min, followed 

by 5 min at 95°C (hot start) and 40 cycles of 15 s at 95°C and 1 min at 60°C. Samples in which 

PTV RNA was not detected after 40 cycles were considered negative. 
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Results 

RT-qPCR Results. 

PTV-2-inoculated group 

Percent positive and mean Cq by sample type is presented in Figure 1. Results of the RT- 

qPCR by animal ID and sample type are presented in Table 1.  Briefly, PTV was detected in all 

(7/7; 100%) cervical, thoracic, and lumbar spinal cord and mesenteric lymph node samples 

(mean Cq range: 28.30- 31.09), six (86%) tracheobronchial lymph node and spleen samples 

(mean Cq range: 32.50-32.88), two (28%) liver samples (mean Cq: 37.04), and one (14%) 

cerebrum, lung, and kidney sample (mean Cq range: 32.59-36.68). PTV was not detected in the 

heart.  PTV was not detected in the serum at DPI 0 (Figure 2). PTV was detected in all serum 

samples at DPI 4 (mean Cq: 30.58). By DPI 7, only one animal (14%) had detectable levels of 

PTV RNA in serum. PTV was not in detected in the feces of any animal at DPI 0.  At DPI 4 and 

all remaining time points, all live animals had detectable levels of PTV in feces (Figure 3; mean 

Cq range: 21.13-26.16). 
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Table 1. RT-qPCR Results by Animal and Tissue Sample Type. Detection of Teschovirus A RNA by qRT-RCR targeting the 

5’UTR region in various samples from control and inoculated piglets.  

Group Animal ID Cerebrum CSCb TSCc LSCd Heart Lung Liver Kidney Spleen TBLNe MSLNf
 

Controla 

PTV-2 

PTV-11 

a Inoculated with 3ml of minimum essential media (MEM). 
b CSC = Cervical spinal cord. c 

TSC = Thoracic spinal cord. d 

LSC = Lumbar spinal cord. 
e TBLN = Tracheobronchial lymph node. f

 

MSLN= Mesenteric lymph node. 

U indicates “undetected” following 40 cycles. 

ND = Not done. 

70 

62 U U U U U U U U U U U 

63 U U U U U U U U U U U 

66 U U U U U U U U U U U 

69 U U U U U U U U U U U 

61 U 34.45 35.98 32.67 U U U U 31.17 31.24 29.54 

67 U 28.64 29.23 28.47 U U U U 33.3 31.91 29.54 

68 U 34.38 33.29 35.65 U U 37.59 U 32.95 33.94 27.95 

72 35.59 30.24 30.65 30.28 U U U U 32.83 34.03 29.16 

73 U 33.22 34.18 34.81 U U U U 32.79 U 28.62 

74 U 25.74 22.59 24.32 U U 36.48 36.68 31.93 32.78 26.97 

76 U 31.47 31.68 32.25 U 32.59 U U U 33.37 26.3 

64 U 33.45 34.81 31.18 34.68 35.75 U U 29.85 30.35 30.09 

65 31.63 26.39 27.59 25.93 U U 34.25 34.64 32.87 32.35 31.42 

70 28.18 25.24 26.28 26.35 U 36.05 U U 32.57 33.51 30.54 

71 32.84 32.61 32.86 34.88 34.41 U U U 33.4 34.69 27.83 

75 31.42 25.11 26.5 25.87 U U U U 32.84 33.32 30.3 

77 30.87 26.54 27.13 23.31 U U U U 31.64 32.82 30.32 

78 U 31.33 U 33.65 U U U U 33.29 33.53 28.35 
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PTV-11-inoculated group 

Percent positive and mean Cq by sample type is presented in Figure 4. Results of the RT- 

qPCR by animal ID and sample type are presented in Table 1.  Briefly, PTV was detected in all 

(7/7; 100%) cervical and lumbar spinal cord, spleen, and tracheobronchial and mesenteric lymph 

node samples (mean Cq range: 28.67-32.94). PTV was detected in six (86%) thoracic spinal cord 

(mean Cq: 29.20), five (71 %) cerebrum (mean Cq; 30.99), two (28%) lung and heart sample 

(mean Cq: 35.90 and 34.55, respectively) and one (14%) kidney and liver sample (mean Cq: 

34.64 and 34.25).  Serum and fecal RT-qPCR results by animal and day post inoculation are 

presented in Table 2.  Briefly, PTV was not detected in the serum at DPI 0 (Figure 2). PTV was 

detected in all serum samples at DPI 4 (mean Cq: 31.85). At DPI 7, 11, and 21, two of 7 samples 

were positive (mean Cq range: 34.88-35.18).  Positive samples were from different animals at 

each time point. At DPI 0, PTV was not detected in feces. PTV was detected in all available 

samples until DPI 21 (Figure 3; mean Cq range: 20.96-26.02). 

Sham-inoculated group 

Nucleic acids of PTV were not detected in any sample from control animals. 
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Figure 2. Mean serum Cq by serotype. 

Figure 2. Mean fecal Cq by serotype



www.manaraa.com

73 

Figure 4. PTV-11 Percentage of positive samples and mean Cq value by tissue sample. 
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Table 2. qRT-PCR Serum and Fecal Results by Animal and Day Post Inoculation. Detection of Teschovirus A RNA by qRT- 

RCR targeting the 5’UTR region from control and inoculated piglets. 

Group 
Animal 

ID 

Feces Serum 

62 

63 

Control 

66 

69 

61 

67 

68 

PTV-2 72 

73 

74 

76 

64 

65 

70 

PTV-11 71 

75 

77 

78 

a Inoculated with 3ml of minimum essential media (MEM). 
U indicates “undetected” following 40 cycles. 

ND = Not done. 

74 

DPI 0 DPI 4 DPI 7 DPI 11 DPI 21 DPI 0 DPI 4 DPI 7 DPI 11 DPI 21 

U U U U U U U U U U 

U U U U U U U U U U 

U U U U U U U U U U 

U U U U U U U U U U 

U 26.65 20.73 24.04 29.91 U 27.11 U U U 

U 21.66 20.53 18.63 ND U 30.89 U U ND 

U 20.4 21.49 23.11 29.74 U 30.67 U U U 

U 24.17 23.51 21.01 20.32 U 33.14 U U ND 

U 21.59 20.49 21.52 26.46 U 29.8 U U U 

U 22.64 31.15 19.54 ND U 30.42 35.9 U U 

U 19.62 24.35 20.59 25.62 U 32.43 U U U 

U 24.4 20.65 24.01 27.98 U 28.33 34.71 U U 

U 22.47 20.06 22.03 ND U 30.98 U U ND 

U 24.4 19.79 24.47 ND U 34.26 U U ND 

U 21.89 21.24 20.84 26.94 U 34.71 U U 34.77 

U 20.15 21.27 20.85 ND U 30.3 U 35.36 ND 

U 24.21 21.21 32.19 ND U 31.91 U 34.4 ND 

U 24.58 22.59 21.59 23.36 U 32.98 35.05 U 35.6 



www.manaraa.com

75 

Discussion 

Viral shedding in feces was detected at 4 DPI in all animals prior to clinical signs of TE, 

which were first noted in the PTV-11-inculated group at 9 DPI and 12 DPI in the PTV-2- 

inouclated group. All live animals with and without clinical signs consistent with TE shed PTV 

through the termination of the study at DPI 21. 

Fecal Cq values were approximately 10-100 logs lower in comparison to the mesenteric 

lymph node which is the next lowest mean Cq value.  These findings are similar to other studies 

in which PTV-1 was detected by RT-PCR in the large intestine of animals with TE at DPI 6, 13, 

20, and 28 and virus isolation at DPI 21 [13] and detection of PTV-2 by virus isolation at DPI 21 

in animals with and without TE.  Dardiri et al. detected PTV-1 by virus isolation at DPI 2 in a 

pig that developed TE following intracranial and intranasal inoculation [14]. 

Viremia was detected at 4 DPI in all virus inoculated animals; however by DPI 7 only 

three animals had detectable levels of PTV in serum. At DPI 11 and 21 two animals at each time 

point had detectable levels of PTV in serum.  Based on these findings, it appears that viremia is 

inconsistently detected in animals with histologic evidence of TE. Others have detected PTV-1 in 

serum at necropsy consistently in animals with TE at DPI 6 and 13 and less consistently by DPI 

20 with PTV-1 not being detected in serum by DPI 28 [15]. 

Teschovirus A nucleic acid was commonly detected in the spinal cord of viral inoculated 

animals and less common in the cerebrum of animals inoculated with PTV-2.  In both viral 

inoculated groups the mesenteric lymph node had the lowest Cq value of any tissue sample.  One 

possible explanation could be migration of lymphoid cells carrying PTV from the intestine to the 
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mesenteric lymph node.  Apart from samples in the spinal cord, PTV was most consistently 

detected in lymphoid tissues including spleen, tracheobronchial lymph node and mesenteric 

lymph node.  In the evaluation of endemically infected animals in which the status of clinical 

signs consistent with TE are not available, Chui et al. also found that lymph node samples 

yielded the highest relative viral load and cerebrum (pooled cranial and medial sections) yielded 

the lowest relative viral load [16].  Dardiri et al. also found a significantly lower level of virus in 

the thalamus, motor cortex, and olfactory bulb compared to the cervical and thoracic spinal cord. 

The distribution and higher presence of PTV RNA in spinal cord samples could reflect 

the findings made by several authors that specific histological lesions are more frequently found 

in spinal cord than in cerebrum.  Similar to other studies in animals with TE, PTV was detected 

less commonly in the liver and kidney [14,15].  Unlike studies using PTV-1 strains in which 91% 

to 100% of animals with TE were positive by PCR or virus isolation, PTV nucleic acid was 

detected less frequently (14% to 30%) in the lung in animals with TE following PTV-2 or PTV- 

11 inoculation [14,15]. This may be a result of assay sensitivity or serotype variation. 

In conclusion, viral shedding of PTV in feces can be detected by RT-qPCR consistently 

in all animals prior to the development of clinical signs of TE; however, viremia is less 

consistently detected by RT-qPCR even in animals with clinical signs of TE. Although viral 

nucleic acid was detected in a vast majority of spinal cord and lymphoid samples, cerebrum 

while part of the central nervous system, may not be the best sample type to detect PTV in 

animals with TE. 
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CHAPTER 6. SUMMARY AND CONCLUSION 

The purpose of this thesis was to determine and corroborate the neuropathogenicity of two 

wild strains of Teschovirus A recently identified. These two strains, PTV-2 USA/IA65463/2014 

and PTV-11 USA/IA09592/2013 were isolated from clinical cases submitted to the Iowa State 

University Veterinary Diagnostic Laboratory (ISUVDL). 

A literature review chapter initiates this thesis followed by a short chapter where cases of 

Teschovirus encephalomyelitis diagnosed at ISUVDL during the years 2013-2016 were identified. 

The next chapter consist in the experimental inoculation of both viruses in susceptible animals as 

the results and conclusions from this experiment, and a final research chapter where the 

distribution and detection of PTV nucleic acids is assessed and quantified. 

The main objective of this thesis, to induce Teschovirus encephalomyelitis in experimental 

animals with wild-type strains PTV-2 USA/IA65463/2014 and PTV-11 USA/IA09592/2013 was 

successfully achieved. 

A porcine model was developed to assess the neuropathogenicity of both (sero) types. The 

porcine model adopted for this research demonstrated to be a successful platform to induce 

experimental disease. Animals in both inoculated groups developed disease and the virus was later 

recovered from affected tissues. It is relevant to remark that this if the first description of PTV 

serotype 11 in the United States and further research should be conducted to elucidate how this 

pathogen could affect swine herds. 

The detection of PTV nucleic acids in different sample types allowed quantification of this 

pathogen in CNS tissue corroborating its neuropathogenicity and permitted to identify sample 

types suitable for diagnosis. 
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The findings from this study are limited due to the small sample size used in the 

experiments. This is the major limitation of this thesis and the conclusions as indications from this 

work should be interpreted contemplating this factor. 

Thus far, the epidemiology of this pathogen in the U.S. as the differences between 

serotypes is not completely understood and possible areas for further investigation should 

contemplate the diagnosis of other serotypes as the presence of novel serotypes in the swine 

industry. 
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APPEMDIX. LIST OF PTV-11 AND PTV-2 STRAINS 

This list enumerates PTV-11 and PTV-2 strians identified for this thesis. 

erence 

88 

PTV-11 Strains 

GenBank accession Strain name Isolat ion Co untry Sample Ref 

AF296096 Dresden 196 5 Ge rmany CNS tissue Zell et al. 

AF296121 DS 1696/91 199 1 Ge rmany B rain Zell et al. 

AY392536 RD 181/01 200 1 Ge rmany N .A. Zell et al. 

AF296120 UKG 53/81 198 1 U.K. Feces Zell et al. 

AY392550 1008/88 198 8 Ge rmany Spin al cord Zell et al. 

GQ293238 Vir 2374/01 200 1 Ge rmany N .A. Zell et al. 

AM261026 Swine/IT/298/1996 199 6 I taly fe ces La R osa et al. 

GQ502349 swine/IT/268641/2006 200 6 I taly fe ces La R osa et al. 

GQ502348 swine/IT/268602/2006 200 6 I taly fe ces La R osa et al. 

GQ502347 swine/IT/277121/2006 200 6 I taly fe ces La R osa et al. 

GQ502346 swine/IT/147746/2007 200 7 I taly fe ces La R osa et al. 

JF724040 CC82 200 9 S pain fe ces Buitr ago et al. 

N.A. OH264/2010 201 2 Czech Republic fe ces Prodělalová et al. 

N.A. CAPM V-180 201 2 Czech Republic fetal tissues Prodělalová et al. 

AM261026 Swine/IT/298/1996 199 6 I taly fe ces La rosa et al. 

PTV-2 Strains 

AF296087 T-80 196 0 USA To nsils Bet ts et al. 

AF296110 Sek 49/99 199 9 Ge rmany Orga n pool Zell et al. 

AF296107 Vir 6711-12/83 198 3 Ge rmany B rain Zell et al. 

AF296108 Vir 6793/83 198 3 Ge rmany B rain Auerbach et al. 
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GenBank accession Strain name Isolation Country Sample Reference 

AF296109 Vir 480/87 1987 Germany Brain Auerbach et al. 

GQ293229 Vir 2018/87 1987 Germany N.A. Zell et al. 

AY392534 DS 756/93 1983 Germany Brain Zell et al. 

AY392533 DS 183/93 1983 Germany N.A. Zell et al. 

AY392542 2-AK-III 1963 Hungary Rectal swab Szent-Ivanyi et al. 

AY392541 12-PL 1963 Hungary Rectal swab Szent-Ivanyi et al. 

AY392537 Stendal 2532 N.A. Germany N.A. Zell et al. 

AM261027 Swine/IT/320/1997 1997 Italy Feces La Rosa et al. 

AB049554 SFK10 1990 Japan Kaku et al. 

GU446660 JF613 2009 China Brain Wang et al. 

KX527849 ZJ16LX0401 2016 China N.A. Gu et al. 

JF724046 CC90 2009 Spain feces Buitrago et al. 

JF724045 CC89 2009 Spain feces Buitrago et al. 

JF724044 CC87 2009 Spain feces Buitrago et al. 

JF724043 CC86 2009 Spain feces Buitrago et al. 

JF724042 CC85 2009 Spain feces Buitrago et al. 

JF724038 CC80 2005 Spain feces Buitrago et al. 

JF724036 CC78 2005 Spain feces Buitrago et al. 

JF724035 CC77 2005 Spain feces Buitrago et al. 

JF724034 CC76 2005 Spain feces Buitrago et al. 

JF724033 CC75 2005 Spain feces Buitrago et al. 

JF724032 CC74 2005 Spain feces Buitrago et al. 

JF724029 CC71 2005 Spain feces Buitrago et al. 

JF724028 CC70 2007 Spain feces Buitrago et al. 

JF724026 CC67 2005 Spain feces Buitrago et al. 

JF724023 CC60 2005 Spain feces Buitrago et al. 

JF724022 CC59 2005 Spain feces Buitrago et al. 

JF724019 CC49 2005 Spain feces Buitrago et al. 
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GenBank accession Strain name Isolation Country Sample Reference 

JF724016 CC45 2005 Spain feces Buitrago et al. 

JF724015 CC44 2005 Spain feces Buitrago et al. 

JF724014 CC43 2005 Spain feces Buitrago et al. 

JF724009 CC37 2005 Spain feces Buitrago et al. 

JF724005 CC29 2005 Spain feces Buitrago et al. 

JF724004 CC28 2005 Spain feces Buitrago et al. 

JF724002 CC26 2005 Spain feces Buitrago et al. 

JF723999 CC22 2005 Spain feces Buitrago et al. 

JF723998 CC21 2005 Spain feces Buitrago et al. 

JF723996 CC19 2005 Spain feces Buitrago et al. 

JF723995 CC18 2005 Spain feces Buitrago et al. 

JF723988 CC5 2005 Spain feces Buitrago et al. 

JF723987 CC4 2005 Spain feces Buitrago et al. 

JF723986 CC3 2005 Spain feces Buitrago et al. 

JF723985 CC2 2005 Spain feces Buitrago et al. 

JF723984 CC1 2005 Spain feces Buitrago et al. 

GQ502334 swine/IT/136514/2007 2007 Italy feces La Rosa et al. 

GQ502333 swine/IT/88291/2007 2007 Italy feces La Rosa et al. 

GQ502332 swine/IT/77378/2007 2007 Italy feces La Rosa et al. 

GQ502331 swine/IT/70693/2007 2007 Italy feces La Rosa et al. 

GQ502330 swine/IT/281874/2006 2006 Italy feces La Rosa et al. 

GQ502329 swine/IT/280605/2006 2006 Italy feces La Rosa et al. 

GQ502328 swine/IT/280327/2006 2006 Italy feces La Rosa et al. 

GQ502326 swine/IT/277081/2006 2006 Italy feces La Rosa et al. 

GQ502325 swine/IT/274566/2006 2006 Italy feces La Rosa et al. 

GQ502324 swine/IT/273188/2006 2006 Italy feces La Rosa et al. 

GQ502323 swine/IT/272217/2006 2006 Italy feces La Rosa et al. 

GQ502322 swine/IT/270947/2006 2006 Italy feces La Rosa et al. 
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GenBank accession Strain name Isolation Country Sample Reference 

GQ502321 swine/IT/268624/2006 2006 Italy feces La Rosa et al. 

GQ502320 swine/IT/266543/2006 2006 Italy feces La Rosa et al. 

N.A. Isolate 6335 1988 U.S.A. Intestinal content Janke et al. 

N.A. Isolate o3b 1966 U.S.A. brain Koestner et al. 
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